Borysova M., Zavazieva D., Kakati N., Gross E. & Bressler S.
(2025)
Journal of Instrumentation.
20,
6,
P06012.
In the context of a gas-sampling Digital Hadronic Calorimeter (DHCAL), we explore the potential of using (GNN) for hadron energy reconstruction and Graph Neural Networks (PID) in future collider experiments. For Particle Identification (PID), we achieved classification efficiencies exceeding 50% for neutrons and pions, with notably higher efficiencies for kaons and protons. Protons exhibited the highest efficiency of 77%, followed by neutral kaons. The energy resolution for these hadrons is studied in the energy range of 1-50 GeV, with a further investigation into the resolution as a function of the incoming particle's angle and readout granularity, focusing on charged pions. Compared to traditional analysis methods, our results indicate that improved performance can be achieved even with coarser detector granularity, potentially making future (DHCAL) systems more cost-effective.
Borysova M., Bressler S., Gross E., Kakati N. & Zavazieva D.
(2025)
EPJ Web of Conferences.
320,
00025.
Precision measurement of hadronic final states presents complex experimental challenges. The study explores the concept of a gaseous Digital Hadronic Calorimeter (DHCAL) and discusses the potential benefits of employing Graph Neural Network (GNN) methods for future collider experiments. In particular, we use GNN to describe calorimeter clusters as point clouds or a collection of data points representing a three-dimensional object in space. Combined with Graph Attention Transformers (GATs) and DeepSets algorithms, this results in an improvement over existing baseline techniques for particle identification and energy resolution. We discuss the challenges encountered in implementing GNN methods for energy measurement in digital calorimeters, e.g., the large variety of hadronic shower shapes and the hyper-parameter optimization. We also discuss the dependency of the measured performance on the angle of the incoming particle and on the detector granularity. Finally, we highlight potential future directions and applications of these techniques.
Dreyer E., Gross E., Kobylianskii D., Mikuni V. & Nachman B.
(2025)
arXiv.org.
We extend the Particle-flow Neural Assisted Simulations (Parnassus) framework of fast simulation and reconstruction to entire collider events. In particular, we use two generative Artificial Intelligence (genAI) tools, continuous normalizing flows and diffusion models, to create a set of reconstructed particle-flow objects conditioned on truth-level particles from CMS Open Simulations. While previous work focused on jets, our updated methods now can accommodate all particle-flow objects in an event along with particle-level attributes like particle type and production vertex coordinates. This approach is fully automated, entirely written in Python, and GPU-compatible. Using a variety of physics processes at the LHC, we show that the extended Parnassus is able to generalize beyond the training dataset and outperforms the standard, public tool Delphes.
Rieck P., Cranmer K., Dreyer E., Gross E., Kakati N., Kobylanskii D., Merz G. W. & Soybelman N.
(2025)
arXiv.org.
We extend the re-simulation-based self-supervised learning approach to learning representations of hadronic jets in colliders by exploiting the Markov property of the standard simulation chain. Instead of masking, cropping, or other forms of data augmentation, this approach simulates pairs of events where the initial portion of the simulation is shared, but the subsequent stages of the simulation evolve independently. When paired with a contrastive loss function, this naturally leads to representations that capture the physics in the initial stages of the simulation. In particular, we force the hard scattering and parton shower to be shared and let the hadronization and interaction with the detector evolve independently. We then evaluate the utility of these representations on downstream tasks.
Lu J., Liu S., Kobylianskii D., Dreyer E., Gross E. & Liang S.
(2024)
Machine Learning: Science and Technology.
5,
4,
045028.
In high-energy physics, particles produced in collision events decay in a format of a hierarchical tree structure, where only the final decay products can be observed using detectors. However, the large combinatorial space of possible tree structures makes it challenging to recover the actual decay process given a set of final particles. To better analyse the hierarchical tree structure, we propose a graph-based deep learning model to infer the tree structure to reconstruct collision events. In particular, we use a compact matrix representation termed as lowest common ancestor generations matrix, to encode the particle decay tree structure. Then, we introduce a perturbative augmentation technique applied to node features, aiming to mimic experimental uncertainties and increase data diversity. We further propose a supervised graph contrastive learning algorithm to utilize the information of inter-particle relations from multiple decay processes. Extensive experiments show that our proposed supervised graph contrastive learning with perturbative augmentation method outperforms state-of-the-art baseline models on an existing physics-based dataset, significantly improving the reconstruction accuracy. This method provides a more effective training strategy for models with the same parameters and makes way for more accurate and efficient high-energy particle physics data analysis.
Soybelman N., Schiavi C., Di Bello F. A. & Gross E.
(2024)
Machine Learning-science and Technology.
5,
4,
045042.
The reconstruction of particle tracks from hits in tracking detectors is a computationally intensive task due to the large combinatorics of detector signals. Recent efforts have proven that ML techniques can be successfully applied to the tracking problem, extending and improving the conventional methods based on feature engineering. However, complex models can be challenging to implement on heterogeneous trigger systems, integrating architectures such as field programmable gate arrays (FPGAs). Deploying the network on an FPGA is feasible but challenging and limited by its resources. An efficient alternative can employ symbolic regression (SR). We propose a novel approach that uses SR to replace a graph-based neural network. Substituting each network block with a symbolic function preserves the graph structure of the data and enables message passing. The technique is perfectly suitable for heterogeneous hardware, as it can be implemented more easily on FPGAs and grants faster execution times on CPU with respect to conventional methods. While the tracking problem is the target for this work, it also provides a proof-of-principle for the method that can be applied to many use cases.
Detector simulation and reconstruction are a significant computational bottleneck in particle physics. We develop particle-flow neural-assisted simulations (parnassus) to address this challenge. Our deep learning model takes as input a point cloud (particles impinging on a detector) and produces a point cloud (reconstructed particles). By combining detector simulations and reconstruction into one step, we aim to minimize resource utilization and enable fast surrogate models suitable for application both inside and outside large collaborations. We demonstrate this approach using a publicly available dataset of jets passed through the full simulation and reconstruction pipeline of the Compact Muon Solenoid (CMS) experiment. We show that parnassus accurately mimics the CMS particle flow algorithm on the (statistically) same events it was trained on and can generalize to jet momentum and type outside of the training distribution.
Kobylianskii D., Soybelman N., Kakati N., Dreyer E., Nachman B. & Gross E.
(2024)
Physical Review D.
110,
9,
092013.
The computational intensity of detector simulation and event reconstruction poses a significant difficulty for data analysis in collider experiments. This challenge inspires the continued development of machine learning techniques to serve as efficient surrogate models. We propose a fast emulation approach that combines simulation and reconstruction. In other words, a neural network generates a set of reconstructed objects conditioned on input particle sets. To make this possible, we advance set-conditional set generation with diffusion models. Using a realistic, generic, and public detector simulation and reconstruction package (COCOA), we show how diffusion models can accurately model the complex spectrum of reconstructed particles inside jets.
Kakati N., Dreyer E., Ivina A., Bello F. A. D., Heinrich L., Kado M. & Gross E.
(2024)
arXiv.org.
In high energy physics, the ability to reconstruct particles based on their detector signatures is essential for downstream data analyses. A particle reconstruction algorithm based on learning hypergraphs (HGPflow) has previously been explored in the context of single jets. In this paper, we expand the scope to full proton-proton and electron-positron collision events and study reconstruction quality using metrics at the particle, jet, and event levels. Instead of passing entire events through HGPflow, we train it on smaller partitions for scalability and to avoid potential bias from long-range correlations related to the physics process. We demonstrate that this approach is feasible and that on most metrics, HGPflow outperforms both traditional particle flow algorithms and a machine learning-based benchmark model.
Kobylianskii D., Soybelman N., Dreyer E. & Gross E.
(2024)
Physical Review D.
110,
7,
072003.
Denoising diffusion models have gained prominence in various generative tasks, prompting their exploration for the generation of calorimeter responses. Given the computational challenges posed by detector simulations in high-energy physics experiments, the necessity to explore new machine-learning-based approaches is evident. This study introduces a novel graph-based diffusion model designed specifically for rapid calorimeter simulations. The methodology is particularly well-suited for low-granularity detectors featuring irregular geometries. We apply this model to the ATLAS dataset published in the context of the Fast Calorimeter Simulation Challenge 2022, marking the first application of a graph diffusion model in the field of particle physics.
Accurately reconstructing particles from detector data is a critical challenge in experimental particle physics, where the spatial resolution of calorimeters has a crucial impact. This study explores the integration of super-resolution techniques into an LHC-like reconstruction pipeline to effectively enhance the granularity of calorimeter data and suppress noise. We find that this software preprocessing step can significantly improve reconstruction quality without physical changes to detectors. To demonstrate the impact of our approach, we propose a novel particle flow model that offers enhanced particle reconstruction quality and interpretability. These advancements underline the potential of super-resolution to impact both current and future particle physics experiments.
Soybelman N., Kakati N., Heinrich L., Di Bello F. A., Dreyer E., Ganguly S., Gross E., Kado M. & Shlomi J.
(2023)
Machine Learning: Science and Technology.
4,
4,
045036.
The simulation of particle physics data is a fundamental but computationally intensive ingredient for physics analysis at the large Hadron collider, where observational set-valued data is generated conditional on a set of incoming particles. To accelerate this task, we present a novel generative model based on a graph neural network and slot-attention components, which exceeds the performance of pre-existing baselines.
Charkin-Gorbulin A., Cranmer K., Di Bello F. A., Dreyer E., Ganguly S., Gross E., Heinrich L., Kado M., Kakati N., Rieck P., Santi L. & Tusoni M.
(2023)
Machine Learning: Science and Technology.
4,
3,
035042.
A configurable calorimeter simulation for AI (CoCoA) applications is presented, based on the Geant4 toolkit and interfaced with the Pythia event generator. This open-source project is aimed to support the development of machine learning algorithms in high energy physics that rely on realistic particle shower descriptions, such as reconstruction, fast simulation, and low-level analysis. Specifications such as the granularity and material of its nearly hermetic geometry are user-configurable. The tool is supplemented with simple event processing including topological clustering, jet algorithms, and a nearest-neighbors graph construction. Formatting is also provided to visualise events using the Phoenix event display software.
Di Bello F. A., Dreyer E., Ganguly S., Gross E., Heinrich L., Ivina A., Kado M., Kakati N., Santi L., Shlomi J. & Tusoni M.
(2023)
European Physical Journal C.
83,
7,
596.
The task of reconstructing particles from low-level detector response data to predict the set of final state particles in collision events represents a set-to-set prediction task requiring the use of multiple features and their correlations in the input data. We deploy three separate set-to-set neural network architectures to reconstruct particles in events containing a single jet in a fully-simulated calorimeter. Performance is evaluated in terms of particle reconstruction quality, properties regression, and jet-level metrics. The results demonstrate that such a high-dimensional end-to-end approach succeeds in surpassing basic parametric approaches in disentangling individual neutral particles inside of jets and optimizing the use of complementary detector information. In particular, the performance comparison favors a novel architecture based on learning hypergraph structure, HGPflow, which benefits from a physically-interpretable approach to particle reconstruction.
Balek P., Barnea R., Birman M., Cao Y., Chen B., Chen J., Chen J., Chen J., Citron Z. H., Cohen H., Duchovni E., Dumancic M., Ganguly S., Ghosh A., Ghosh A., Gross E., Guo Y., Hod N., Ivina A., Kahn A., Lellouch D., Levin D., Levinson L. J., Li C. Q., Li H., Li H., Li J., Li M., Li X., Longo L., Ma L. L., Mikenberg G., Milov A., Ng C. W., Pitt M., Ravinovich I., Robertson S. H., Roy A., Roy D., Shaked Renous D., Shapiro M., Shlomi J., Singh S., Smakhtin V., Turgeman D., Wang H., Wang H., Wang J., Wang J., Wang S. M., Wang Y., Waugh B. M., Wolf T. M., Wu X., Xu D., Yang S., Yang Y., Zhang G., Zhang Y., Zhang Z., Zhang Z. & Zhou Y.
(2023)
Journal of High Energy Physics.
2023,
6,
19.
A measurement of the top-quark mass (mt) in the tt¯ → lepton + jets channel is presented, with an experimental technique which exploits semileptonic decays of b-hadrons produced in the top-quark decay chain. The distribution of the invariant mass mℓμ of the lepton, ℓ (with ℓ = e, μ), from the W-boson decay and the muon, μ, originating from the b-hadron decay is reconstructed, and a binned-template profile likelihood fit is performed to extract mt. The measurement is based on data corresponding to an integrated luminosity of 36.1 fb−1 of √s = 13 TeV pp collisions provided by the Large Hadron Collider and recorded by the ATLAS detector. The measured value of the top-quark mass is mt = 174.41 ± 0.39 (stat.) ± 0.66 (syst.) ± 0.25 (recoil) GeV, where the third uncertainty arises from changing the Pythia8 parton shower gluon-recoil scheme, used in top-quark decays, to a recently developed setup. [Figure not available: see fulltext.].
Aizenberg I., Bakos E., Balek P., Birman M., Cai Y., Cao Y., Chen A., Chen B., Chen B., Chen J., Chen J., Citron Z. H., Cohen H., Das S. J., Duchovni E., Ganguly S., Ghosh A., Ghosh A., Gross E., Guo Y., Hod N., Ivina A., Kahn A., Kahn A., Kumar M., Levin D., Levinson L. J., Li C. Q., Li C. Q., Li H., Li H., Li H., Li H., Li J., Li M., Li X., Longo L., Ma L. L., Mikenberg G., Milov A., Mondal S., Ng C. W., Ravinovich I., Robertson S. H., Roy A., Shaked Renous D., Shapiro M., Sharma S., Shen Q., Shlomi J., Singh S., Singh S., Sinha S., Sinha S., Smakhtin V., Solomon S., Wang H., Wang J., Wang S., Wang S., Wang Y., Wang Y., Waugh B. M., Wu J., Wu X., Xu D., Yang S., Yang Y., Zhang G., Zhang Z., Zhang Z., Zhao H. & Zhou Y.
(2023)
Journal of High Energy Physics.
2023,
6,
155.
A search for flavour-changing neutral current (FCNC) tqH interactions involving a top quark, another up-type quark (q = u, c), and a Standard Model (SM) Higgs boson decaying into a τ-lepton pair (H → τ + τ −) is presented. The search is based on a dataset of pp collisions at √s = 13 TeV that corresponds to an integrated luminosity of 139 fb −1 recorded with the ATLAS detector at the Large Hadron Collider. Two processes are considered: single top quark FCNC production in association with a Higgs boson (pp → tH), and top quark pair production in which one of top quarks decays into Wb and the other decays into qH through the FCNC interactions. The search selects events with two hadronically decaying τ-lepton candidates (τ had) or at least one τ had with an additional lepton (e, μ), as well as multiple jets. Event kinematics is used to separate signal from the background through a multivariate discriminant. A slight excess of data is observed with a significance of 2.3σ above the expected SM background, and 95% CL upper limits on the t → qH branching ratios are derived. The observed (expected) 95% CL upper limits set on the t → cH and t → uH branching ratios are 9.4×10−4(4.8−1.4+2.2×10−4) and 6.9×10−4(3.5−1.0+1.5×10−4) , respectively. The corresponding combined observed (expected) upper limits on the dimension-6 operator Wilson coefficients in the effective tqH couplings are Ccφ < 1.35 (0.97) and Cuφ < 1.16 (0.82). [Figure not available: see fulltext.]
Aizenberg I., Bakos E., Balek P., Birman M., Cai Y., Cao Y., Chen A., Chen B., Chen B., Chen J., Chen J., Citron Z. H., Cohen H., Das S. J., Duchovni E., Ganguly S., Ghosh A., Ghosh A., Gross E., Guo Y., Hod N., Ivina A., Kahn A., Kahn A., Kumar M., Levin D., Levinson L. J., Li C., Li C., Li H., Li H., Li H., Li H., Li J., Li M., Li X., Longo L., Ma L. L., Mikenberg G., Milov A., Mondal S., Ng C. W., Ravinovich I., Robertson S. H., Roy A., Shaked Renous D., Shapiro M., Sharma S., Shen Q., Shlomi J., Singh S., Singh S., Sinha S., Sinha S., Smakhtin V., Solomon S., Wang H., Wang J., Wang S. M., Wang S. M., Wang Y., Wang Y., Waugh B. M., Wu J., Wu X., Xu D., Yang S., Yang Y., Zhang G., Zhang Z., Zhang Z., Zhao H. & Zhou Y.
(2023)
Journal of High Energy Physics.
2023,
6,
82.
The electroweak production of Z(νν¯) γ in association with two jets is studied in a regime with a photon of high transverse momentum above 150 GeV using protonproton collisions at a centre-of-mass energy of 13 TeV at the Large Hadron Collider. The analysis uses a data sample with an integrated luminosity of 139 fb−1 collected by the ATLAS detector during the 20152018 LHC data-taking period. This process is an important probe of the electroweak symmetry breaking mechanism in the Standard Model and is sensitive to quartic gauge boson couplings via vector-boson scattering. The fiducial Z(νν¯) γjj cross section for electroweak production is measured to be 0.77−0.30+0.34 fb and is consistent with the Standard Model prediction. Evidence of electroweak Z(νν¯) γjj production is found with an observed significance of 3.2σ for the background-only hypothesis, compared with an expected significance of 3.7σ. The combination of this result with the previously published ATLAS observation of electroweak Z(νν¯) γjj production yields an observed (expected) signal significance of 6.3σ (6.6σ). Limits on anomalous quartic gauge boson couplings are obtained in the framework of effective field theory with dimension-8 operators.
Butter A., Plehn T., Schumann S., Badger S., Caron S., Cranmer K., Di Bello F. A., Dreyer E., Forte S., Goncalves D., Gross E., Heimel T., Heinrich G., Heinrich L., Held A., Hoche S., Howard J. N., Ilten P., Isaacson J., Janssen T., Jones S., Kado M., Kagan M., Kasieczka G., Kling F., Kraml S., Krause C., Krauss F., Kroeninger K., Barman R. K., Luchmann M., Magerya V., Maitre D., Malaescu B., Maltoni F., Martini T., Mattelaer O., Nachman B., Pitz S., Rojo J., Schwartz M., Shih D., Siegert F., Stegeman R., Stienen B., Thaler J., Verheyen R., Whiteson D., Winerhalder R. & Zupan J.
(2023)
SciPost Physics.
14,
4,
079.
First-principle simulations are at the heart of the high-energy physics research program. They link the vast data output of multi-purpose detectors with fundamental theory predictions and interpretation. This review illustrates a wide range of applications of modern machine learning to event generation and simulation-based inference, including conceptional developments driven by the specific requirements of particle physics. New ideas and tools developed at the interface of particle physics and machine learning will improve the speed and precision of forward simulations, handle the complexity of collision data, and enhance inference as an inverse simulation problem.
Aizenberg I., Bakos E., Balek P., Birman M., Cao Y., Chen A., Chen B., Chen B., Chen J., Chen J., Citron Z. H., Cohen H., Duchovni E., Ganguly S., Ghosh A., Ghosh A., Gross E., Guo Y., Hod N., Ivina A., Kahn A., Kahn A., Kumar M., Levin D., Levinson L. J., Li C. Q., Li C. Q., Li H., Li H., Li H., Li J., Li M., Li X., Longo L., Ma L. L., Mikenberg G., Milov A., Mondal S., Ng C. W., Ravinovich I., Robertson S. H., Roy A., Renous D. S., Shapiro M., Sharma S., Shlomi J., Singh S., Singh S., Sinha S., Sinha S., Smakhtin V., Solomon S., Wang H., Wang J., Wang S., Wang S., Wang Y., Waugh B. M., Wu J., Wu X., Xu D., Yang S., Yang Y., Zhang G., Zhang Z. & Zhou Y.
(2022)
Computing and Software for Big Science.
6,
1,
7.
The ATLAS experiment at the Large Hadron Collider has a broad physics programme ranging from precision measurements to direct searches for new particles and new interactions, requiring ever larger and ever more accurate datasets of simulated Monte Carlo events. Detector simulation with Geant4 is accurate but requires significant CPU resources. Over the past decade, ATLAS has developed and utilized tools that replace the most CPU-intensive component of the simulationthe calorimeter shower simulationwith faster simulation methods. Here, AtlFast3, the next generation of high-accuracy fast simulation in ATLAS, is introduced. AtlFast3 combines parameterized approaches with machine-learning techniques and is deployed to meet current and future computing challenges, and simulation needs of the ATLAS experiment. With highly accurate performance and significantly improved modelling of substructure within jets, AtlFast3 can simulate large numbers of events for a wide range of physics processes.
Bakos E., Balek P., Birman M., Cao Y., Chen B., Chen J., Chen J., Chen J., Citron Z. H., Cohen H., Duchovni E., Dumancic M., Ganguly S., Ghosh A., Ghosh A., Gross E., Guo Y., Hod N., Ivina A., Kahn A., Kumar M., Levin D., Levinson L. J., Li C. Q., Li H., Li H., Li J., Li M., Li X., Longo L., Ma L. L., Mikenberg G., Milov A., Mondal S., Ng C. W., Ravinovich I., Robertson S. H., Roy A., Renous D. S., Shapiro M., Shlomi J., Singh S., Sinha S., Smakhtin V., Solomon S., Turgeman D., Wang H., Wang J., Wang S. M., Wang S. M., Wang Y., Waugh B. M., Wu J., Wu X., Xu D., Yang S., Yang Y., Zhang G., Zhang Z. & Zhou Y.
(2022)
Computing and Software for Big Science.
6,
1,
3.
The accurate simulation of additional interactions at the ATLAS experiment for the analysis of protonproton collisions delivered by the Large Hadron Collider presents a significant challenge to the computing resources. During the LHC Run 2 (20152018), there were up to 70 inelastic interactions per bunch crossing, which need to be accounted for in Monte Carlo (MC) production. In this document, a new method to account for these additional interactions in the simulation chain is described. Instead of sampling the inelastic interactions and adding their energy deposits to a hard-scatter interaction one-by-one, the inelastic interactions are presampled, independent of the hard scatter, and stored as combined events. Consequently, for each hard-scatter interaction, only one such presampled event needs to be added as part of the simulation chain. For the Run 2 simulation chain, with an average of 35 interactions per bunch crossing, this new method provides a substantial reduction in MC production CPU needs of around 20%, while reproducing the properties of the reconstructed quantities relevant for physics analyses with good accuracy.
Aizenberg I., Bakos E., Balek P., Birman M., Cao Y., Chen A., Chen B., Chen J., Chen J., Citron Z. H., Cohen H., Duchovni E., Ganguly S., Ghosh A., Ghosh A., Gross E., Guo Y., Hod N., Ivina A., Kahn A., Kumar M., Levin D., Levinson L. J., Li C., Li C., Li H., Li H., Li H., Li J., Li M., Li X., Longo L., Ma L. L., Mikenberg G., Milov A., Mondal S., Ng C. W., Ravinovich I., Robertson S. H., Roy A., Shaked Renous D., Shapiro M., Sharma S., Shlomi J., Singh S., Singh S., Sinha S., Sinha S., Smakhtin V., Solomon S., Wang H., Wang J., Wang S., Wang S., Wang Y., Waugh B. M., Wu J., Wu X., Xu D., Yang S., Yang Y., Zhang G., Zhang Z. & Zhou Y.
(2022)
European Physical Journal C.
82,
11,
988.
A search for the pair production of heavy leptons as predicted by the type-III seesaw mechanism is presented. The search uses protonproton collision data at a centre-of-mass energy of 13 TeV, corresponding to 139fb-1 of integrated luminosity recorded by the ATLAS detector during Run 2 of the Large Hadron Collider. The analysis focuses on final states with three or four electrons or muons from the possible decays of new heavy leptons via intermediate electroweak bosons. No significant deviations above the Standard Model expectation are observed; upper and lower limits on the heavy lepton production cross-section and masses are derived respectively. These results are then combined for the first time with the ones already published by ATLAS using the channel with two leptons in the final state. The observed lower limit on the mass of the type-III seesaw heavy leptons combining two, three and four lepton channels together is 910 GeV at the 95% confidence level.
Bakos E., Balek P., Birman M., Cao Y., Chen A., Chen B., Chen J., Chen J., Chen J., Citron Z. H., Cohen H., Duchovni E., Ganguly S., Ghosh A., Ghosh A., Gross E., Guo Y., Hod N., Ivina A., Kahn A., Kumar M., Levin D., Levinson L. J., Li C. Q., Li C. Q., Li H., Li H., Li J., Li M., Li X., Longo L., Ma L. L., Mikenberg G., Milov A., Mondal S., Ng C. W., Ravinovich I., Robertson S. H., Roy A., Shaked Renous D., Shapiro M., Sharma S., Shlomi J., Singh S., Sinha S., Sinha S., Smakhtin V., Solomon S., Turgeman D., Wang H., Wang J., Wang S. M., Wang S. M., Wang Y., Waugh B. M., Wu J., Wu X., Xu D., Yang S., Yang Y., Zhang G., Zhang Z. & Zhou Y.
(2022)
Physical Review D.
106,
5,
052001.
Searches are performed for nonresonant and resonant di-Higgs boson production in the bb¯γγ final state. The dataset used corresponds to an integrated luminosity of 139 fb-1 of proton-proton collisions at a center-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. No excess above the expected background is found and upper limits on the di-Higgs boson production cross sections are set. A 95% confidence-level upper limit of 4.2 times the cross section predicted by the Standard Model is set on pp→HH nonresonant production, where the expected limit is 5.7 times the Standard Model predicted value. The expected constraints are obtained for a background hypothesis excluding pp→HH production. The observed (expected) constraints on the Higgs boson trilinear coupling modifier κλ are determined to be [-1.5,6.7] ([-2.4,7.7]) at 95% confidence level, where the expected constraints on κλ are obtained excluding pp→HH production from the background hypothesis. For resonant production of a new hypothetical scalar particle X (X→HH→bb¯γγ), limits on the cross section for pp→X→HH are presented in the narrow-width approximation as a function of mX in the range 251 GeV≤mX≤1000 GeV. The observed (expected) limits on the cross section for pp→X→HH range from 640 fb to 44 fb (391 fb to 46 fb) over the considered mass range.
Aizenberg I., Bakos E., Balek P., Birman M., Cao Y., Chen A., Chen B., Chen B., Chen J., Chen J., Citron Z. H., Cohen H., Duchovni E., Ganguly S., Ghosh A., Ghosh A., Gross E., Guo Y., Hod N., Ivina A., Kahn A., Kahn A., Kumar M., Levin D., Levinson L. J., Li C. Q., Li C. Q., Li H., Li H., Li H., Li J., Li M., Li X., Longo L., Ma L. L., Mikenberg G., Milov A., Mondal S., Ng C. W., Ravinovich I., Robertson S. H., Roy A., Shaked Renous D., Shapiro M., Sharma S., Shlomi J., Singh S., Singh S., Sinha S., Sinha S., Smakhtin V., Solomon S., Wang H., Wang J., Wang S. M., Wang S. M., Wang Y., Waugh B. M., Wu J., Wu X., Xu D., Yang S., Yang Y., Zhang G., Zhang Z. & Zhou Y.
(2022)
Physical Review D.
106,
3,
032005.
A search for events with two displaced vertices from long-lived particle (LLP) pairs using data collected by the ATLAS detector at the LHC is presented. This analysis uses 139 fb-1 of proton-proton collision data at √s=13 TeV recorded in 2015-2018. The search employs techniques for reconstructing vertices of LLPs decaying to jets in the muon spectrometer displaced between 3 and 14 m with respect to the primary interaction vertex. The observed numbers of events are consistent with the expected background and limits for several benchmark signals are determined. For the Higgs boson with a mass of 125 GeV, the paper reports the first exclusion limits for branching fractions into neutral long-lived particles below 0.1%, while branching fractions above 10% are excluded at 95% confidence level for LLP proper lifetimes ranging from 4 cm to 72.4 m. In addition, the paper present the first results for the decay of LLPs into tt¯ in the ATLAS muon spectrometer.
Bakos E., Balek P., Barnea R., Birman M., Cao Y., Chen B., Chen J., Chen J., Chen J., Citron Z. H., Cohen H., Duchovni E., Dumancic M., Ganguly S., Ghosh A., Ghosh A., Gross E., Guo Y., Hod N., Ivina A., Kahn A., Kumar M., Levin D., Levinson L. J., Li C. Q., Li H., Li H., Li J., Li M., Li X., Longo L., Ma L. L., Mikenberg G., Milov A., Mondal S., Ng C. W., Pitt M., Ravinovich I., Robertson S. H., Roy A., Shaked Renous D., Shapiro M., Shlomi J., Singh S., Sinha S., Smakhtin V., Turgeman D., Wang H., Wang H., Wang J., Wang S., Wang S., Wang Y., Waugh B. M., Wu X., Xu D., Yang S., Yang Y., Zhang G., Zhang Y., Zhang Z. & Zhou Y.
(2022)
Physical Review D.
106,
3,
032008.
Several observables sensitive to the fragmentation of b quarks into b hadrons are measured using 36 fb-1 of √s=13 TeV proton-proton collision data collected with the ATLAS detector at the LHC. Jets containing b hadrons are obtained from a sample of dileptonic t¯t events, and the associated set of charged-particle tracks is separated into those from the primary pp interaction vertex and those from the displaced b-decay secondary vertex. This division is used to construct observables that characterize the longitudinal and transverse momentum distributions of the b hadron within the jet. The measurements have been corrected for detector effects and provide a test of heavy-quark-fragmentation modeling at the LHC in a system where the top-quark decay products are color connected to the proton beam remnants. The unfolded distributions are compared with the predictions of several modern Monte Carlo parton-shower generators and generator tunes, and a wide range of agreement with the data is observed, with p values varying from 5×10-4 to 0.98. These measurements complement similar measurements from e+e- collider experiments in which the b quarks originate from a color singlet Z/γ∗.
Aizenberg I., Bakos E., Balek P., Birman M., Cai Y., Cao Y., Chen A., Chen B., Chen B., Chen J., Chen J., Citron Z. H., Cohen H., Duchovni E., Ganguly S., Ghosh A., Ghosh A., Gross E., Guo Y., Hod N., Ivina A., Kahn A., Kahn A., Kumar M., Levin D., Levinson L. J., Li C. Q., Li C. Q., Li H., Li H., Li H., Li J., Li M., Li X., Longo L., Ma L. L., Mikenberg G., Milov A., Mondal S., Ng C. W., Ravinovich I., Robertson S. H., Roy A., Shaked Renous D., Shapiro M., Sharma S., Shlomi J., Singh S., Singh S., Sinha S., Sinha S., Smakhtin V., Solomon S., Wang H., Wang J., Wang S. M., Wang S. M., Wang Y., Waugh B. M., Wu J., Wu X., Xu D., Yang S., Yang Y., Zhang G., Zhang Z., Zhao H. & Zhou Y.
(2022)
Journal of High Energy Physics.
2022,
8,
104.
A direct search for Higgs bosons produced via vector-boson fusion and subsequently decaying into invisible particles is reported. The analysis uses 139 fb−1 of pp collision data at a centre-of-mass energy of √s = 13 TeV recorded by the ATLAS detector at the LHC. The observed numbers of events are found to be in agreement with the background expectation from Standard Model processes. For a scalar Higgs boson with a mass of 125 GeV and a Standard Model production cross section, an observed upper limit of 0.145 is placed on the branching fraction of its decay into invisible particles at 95% confidence level, with an expected limit of 0.103. These results are interpreted in the context of models where the Higgs boson acts as a portal to dark matter, and limits are set on the scattering cross section of weakly interacting massive particles and nucleons. Invisible decays of additional scalar bosons with masses from 50 GeV to 2 TeV are also studied, and the derived upper limits on the cross section times branching fraction decrease with increasing mass from 1.0 pb for a scalar boson mass of 50 GeV to 0.1 pb at a mass of 2 TeV. [Figure not available: see fulltext.]
Aizenberg I., Bakos E., Balek P., Birman M., Cao Y., Chen A., Chen B., Chen B., Chen J., Chen J., Citron Z. H., Cohen H., Duchovni E., Ganguly S., Ghosh A., Ghosh A., Gross E., Guo Y., Hod N., Ivina A., Kahn A., Kahn A., Kumar M., Levin D., Levinson L. J., Li C. Q., Li C. Q., Li H., Li H., Li H., Li J., Li M., Li X., Longo L., Ma L. L., Mikenberg G., Milov A., Mondal S., Ng C. W., Ravinovich I., Robertson S. H., Roy A., Shaked Renous D., Shapiro M., Sharma S., Shlomi J., Singh S., Singh S., Sinha S., Sinha S., Smakhtin V., Solomon S., Wang H., Wang J., Wang S. M., Wang S. M., Wang Y., Waugh B. M., Wu J., Wu X., Xu D., Yang S., Yang Y., Zhang G., Zhang Z., Zhao H. & Zhou Y.
(2022)
Journal of High Energy Physics.
2022,
8,
089.
This paper presents updated Monte Carlo configurations used to model the production of single electroweak vector bosons (W, Z/γ∗) in association with jets in proton-proton collisions for the ATLAS experiment at the Large Hadron Collider. Improvements pertaining to the electroweak input scheme, parton-shower splitting kernels and scale-setting scheme are shown for multi-jet merged configurations accurate to next-to-leading order in the strong and electroweak couplings. The computational resources required for these set-ups are assessed, and approximations are introduced resulting in a factor three reduction of the per-event CPU time without affecting the physics modelling performance. Continuous statistical enhancement techniques are introduced by ATLAS in order to populate low cross-section regions of phase space and are shown to match or exceed the generated effective luminosity. This, together with the lower per-event CPU time, results in a 50% reduction in the required computing resources compared to a legacy set-up previously used by the ATLAS collaboration. The set-ups described in this paper will be used for future ATLAS analyses and lay the foundation for the next generation of Monte Carlo predictions for single vector-boson plus jets production.
Aizenberg I., Bakos E., Balek P., Birman M., Cai Y., Cao Y., Chen A., Chen B., Chen B., Chen J., Chen J., Citron Z. H., Cohen H., Duchovni E., Ganguly S., Ghosh A., Ghosh A., Gross E., Guo Y., Hod N., Ivina A., Kahn A., Kahn A., Kumar M., Levin D., Levinson L. J., Li C., Li C., Li H., Li H., Li H., Li J., Li M., Li X., Longo L., Ma L. L., Mikenberg G., Milov A., Mondal S., Ng C. W., Ravinovich I., Robertson S. H., Roy A., Renous D. S., Shapiro M., Sharma S., Shlomi J., Singh S., Singh S., Sinha S., Sinha S., Smakhtin V., Solomon S., Wang H., Wang J., Wang S. M., Wang S. M., Wang Y., Waugh B. M., Wu J., Wu X., Xu D., Yang S., Yang Y., Zhang G., Zhang Z., Zhao H. & Zhou Y.
(2022)
European Physical Journal C.
82,
8,
717.
A search for the Higgs boson decaying into a pair of charm quarks is presented. The analysis uses protonproton collisions to target the production of a Higgs boson in association with a leptonically decaying W or Z boson. The dataset delivered by the LHC at a centre-of-mass energy of √s=13TeV and recorded by the ATLAS detector corresponds to an integrated luminosity of 139 fb-1. Flavour-tagging algorithms are used to identify jets originating from the hadronisation of charm quarks. The analysis method is validated with the simultaneous measurement of WW, WZ and ZZ production, with observed (expected) significances of 2.6 (2.2) standard deviations above the background-only prediction for the (W/ Z) Z(→ cc¯) process and 3.8 (4.6) standard deviations for the (W/ Z) W(→ cq) process. The (W/ Z) H(→ cc¯) search yields an observed (expected) upper limit of 26 (31) times the predicted Standard Model cross-section times branching fraction for a Higgs boson with a mass of 125GeV, corresponding to an observed (expected) constraint on the charm Yukawa coupling modifier |κc|
Aizenberg I., Bakos E., Balek P., Birman M., Cao Y., Chen A., Chen B., Chen B., Chen J., Chen J., Citron Z. H., Cohen H., Duchovni E., Ganguly S., Ghosh A., Ghosh A., Gross E., Guo Y., Hod N., Ivina A., Kahn A., Kahn A., Kumar M., Levin D., Levinson L. J., Li C., Li C., Li H., Li H., Li J., Li M., Li X., Longo L., Ma L. L., Mikenberg G., Milov A., Mondal S., Ng C. W., Ravinovich I., Robertson S. H., Roy A., Shaked Renous D., Shapiro M., Sharma S., Shlomi J., Singh S., Singh S., Sinha S., Sinha S., Smakhtin V., Solomon S., Wang H., Wang J., Wang S. M., Wang S. M., Wang Y., Waugh B. M., Wu J., Wu X., Xu D., Yang S., Yang Y., Zhang G., Zhang Z. & Zhou Y.
(2022)
Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics.
829,
137066.
A search for invisible decays of the Higgs boson as well as searches for dark matter candidates, produced together with a leptonically decaying Z boson, are presented. The analysis is performed using proton−proton collisions at a centre-of-mass energy of 13 TeV, delivered by the LHC, corresponding to an integrated luminosity of 139 fb−1 and recorded by the ATLAS experiment. Assuming Standard Model cross-sections for ZH production, the observed (expected) upper limit on the branching ratio of the Higgs boson to invisible particles is found to be 19% (19%) at the 95% confidence level. Exclusion limits are also set for simplified dark matter models and two-Higgs-doublet models with an additional pseudoscalar mediator.
Aizenberg I., Bakos E., Balek P., Birman M., Cao Y., Chen A., Chen B., Chen B., Chen J., Chen J., Citron Z. H., Cohen H., Duchovni E., Ganguly S., Ghosh A., Ghosh A., Gross E., Guo Y., Hod N., Ivina A., Kahn A., Kahn A., Kumar M., Levin D., Levinson L. J., Li C., Li C., Li H., Li H., Li H., Li J., Li M., Li X., Longo L., Ma L. L., Mikenberg G., Milov A., Mondal S., Ng C. W., Ravinovich I., Robertson S. H., Roy A., Shaked Renous D., Shapiro M., Sharma S., Shlomi J., Singh S., Singh S., Sinha S., Sinha S., Smakhtin V., Solomon S., Wang H., Wang J., Wang S., Wang S., Wang Y., Waugh B. M., Wu J., Wu X., Xu D., Yang S., Yang Y., Zhang G., Zhang Z. & Zhou Y.
(2022)
Journal of High Energy Physics.
2022,
6,
097.
The associated production of a Higgs boson and a top-quark pair is measured in events characterised by the presence of one or two electrons or muons. The Higgs boson decay into a b-quark pair is used. The analysed data, corresponding to an integrated luminosity of 139 fb−1, were collected in proton-proton collisions at the Large Hadron Collider between 2015 and 2018 at a centre-of-mass energy of √s = 13 TeV. The measured signal strength, defined as the ratio of the measured signal yield to that predicted by the Standard Model, is 0.35−0.34+0.36. This result is compatible with the Standard Model prediction and corresponds to an observed (expected) significance of 1.0 (2.7) standard deviations. The signal strength is also measured differentially in bins of the Higgs boson transverse momentum in the simplified template cross-section framework, including a bin for specially selected boosted Higgs bosons with transverse momentum above 300 GeV.
Shlomi J., Ganguly S., Gross E., Cranmer K., Lipman Y., Serviansky H., Maron H. & Segol N.
(2021)
European Physical Journal C.
81,
6,
540.
Jet classification is an important ingredient in measurements and searches for new physics at particle colliders, and secondary vertex reconstruction is a key intermediate step in building powerful jet classifiers. We use a neural network to perform vertex finding inside jets in order to improve the classification performance, with a focus on separation of bottom vs. charm flavor tagging. We implement a novel, universal set-to-graph model, which takes into account information from all tracks in a jet to determine if pairs of tracks originated from a common vertex. We explore different performance metrics and find our method to outperform traditional approaches in accurate secondary vertex reconstruction. We also find that improved vertex finding leads to a significant improvement in jet classification performance.
Di Bello F. A., Ganguly S., Gross E., Kado M., Pitt M., Santi L. & Shlomi J.
(2021)
The European physical journal C, Particles and fields.
81,
2,
p. 107-114
107.
In High Energy Physics experiments Particle Flow (PFlow) algorithms are designed to provide an optimal reconstruction of the nature and kinematic properties of the particles produced within the detector acceptance during collisions. At the heart of PFlow algorithms is the ability to distinguish the calorimeter energy deposits of neutral particles from those of charged particles, using the complementary measurements of charged particle tracking devices, to provide a superior measurement of the particle content and kinematics. In this paper, a computer vision approach to this fundamental aspect of PFlow algorithms, based on calorimeter images, is proposed. A comparative study of the state of the art deep learning techniques is performed. A significantly improved reconstruction of the neutral particle calorimeter energy deposits is obtained in a context of large overlaps with the deposits from charged particles. Calorimeter images with augmented finer granularity are also obtained using super-resolution techniques.
Aad G., Balek P., Birman M., Citron Z. H., Duchovni E., Dumancic M., Ganguly S., Gross E., Hod N., Ivina A., Lellouch D., Levinson L. J., Mikenberg G., Milov A., Ravinovich I., Shlomi J. & Turgeman D.
(2021)
Physics Letters B.
812,
135980.
A search for the dimuon decay of the Standard Model (SM) Higgs boson is performed using data corresponding to an integrated luminosity of 139 fb(-1) collected with the ATLAS detector in Run 2 pp collisions at root s = 13 TeV at the Large Hadron Collider. The observed (expected) significance over the background-only hypothesis for a Higgs boson with a mass of 125.09 GeV is 2.0 sigma (1.7 sigma). The observed upper limit on the cross section times branching ratio for pp -> H -> mu mu is 2.2 times the SM prediction at 95% confidence level, while the expected limit on a H -> mu mu signal assuming the absence (presence) of a SM signal is 1.1(2.0). The best-fit value of the signal strength parameter, defined as the ratio of the observed signal yield to the one expected in the SM, is mu = 1.2 +/- 0.6.
Aad G., Balek P., Birman M., Citron Z. H., Duchovni E., Dumancic M., Ganguly S., Gross E., Hod N., Ivina A., Lellouch D., Levinson L. J., Mikenberg G., Milov A., Pitt M., Ravinovich I., Shaked Renous D., Shlomi J., Shulga E., Smakhtin V. & Turgeman D.
(2021)
Physics Letters B.
812,
135991.
The integrated fiducial cross-section and unfolded differential jet mass spectrum of high transverse momentum Z -> b (b) over bar decays are measured in Z gamma events in proton-proton collisions at root s = 13 TeV. The data analysed were collected between 2015 and 2016 with the ATLAS detector at the Large Hadron Collider and correspond to an integrated luminosity of 36.1 fb(-1). Photons are required to have a transverse momentum p(T) > 175 GeV. The Z -> b (b) over bar decay is reconstructed using a jet with p(T) > 200 GeV, found with the anti-k(t) R = 1.0 jet algorithm, and groomed to remove soft and wide-angle radiation and to mitigate contributions from the underlying event and additional proton-proton collisions. Two different but related measurements are performed using two jet grooming definitions for reconstructing the Z -> b (b) over bar decay: trimming and soft drop. These algorithms differ in their experimental and phenomenological implications regarding jet mass reconstruction and theoretical precision. To identify Zbosons, b-tagged R = 0.2 track-jets matched to the groomed large-R calorimeter jet are used as a proxy for the b-quarks. The signal yield is determined from fits of the data-driven background templates to the different jet mass distributions for the two grooming methods. Integrated fiducial cross-sections and unfolded jet mass spectra for each grooming method are compared with leading-order theoretical predictions. The results are found to be in good agreement with Standard Model expectations within the current statistical and systematic uncertainties.
Aad G., Balek P., Birman M., Citron Z. H., Duchovni E., Dumancic M., Ganguly S., Gross E., Hod N., Ivina A., Lellouch D., Levinson L. J., Mikenberg G., Milov A., Ravinovich I., Shaked Renous D., Shlomi J. & Turgeman D.
(2021)
Journal of High Energy Physics.
2021,
1,
188.
A measurement of event-shape variables in proton-proton collisions at large momentum transfer is presented using data collected at s = 13 TeV with the ATLAS detector at the Large Hadron Collider. Six event-shape variables calculated using hadronic jets are studied in inclusive multijet events using data corresponding to an integrated luminosity of 139 fb−1. Measurements are performed in bins of jet multiplicity and in different ranges of the scalar sum of the transverse momenta of the two leading jets, reaching scales beyond 2 TeV. These measurements are compared with predictions from Monte Carlo event generators containing leading-order or next-to-leading order matrix elements matched to parton showers simulated to leading-logarithm accuracy. At low jet multiplicities, shape discrepancies between the measurements and the Monte Carlo predictions are observed. At high jet multiplicities, the shapes are better described but discrepancies in the normalisation are observed. [Figure not available: see fulltext.]
Aaboud M., Balek P., Bressler S., Citron Z. H., Duchovni E., Dumancic M., Gross E., Köhler M. K., Lellouch D., Levinson L. J., Mikenberg G., Milov A., Pitt M., Ravinovich I., Shlomi J. & Turgeman D.
(2018)
European Physical Journal C.
78,
12,
995.
A search for the electroweak production of charginos, neutralinos and sleptons decaying into final states involving two or three electrons or muons is presented. The analysis is based on 36.1 fb−1 of √s = 13 TeV proton proton collisions recorded by the ATLAS detector at the Large Hadron Collider. Several scenarios based on simplified models are considered. These include the associated production of the next-to-lightest neutralino and the lightest chargino, followed by their decays into final states with leptons and the lightest neutralino via either sleptons or Standard Model gauge bosons; direct production of chargino pairs, which in turn decay into leptons and the lightest neutralino via intermediate sleptons; and slepton pair production, where each slepton decays directly into the lightest neutralino and a lepton. No significant deviations from the Standard Model expectation are observed and stringent limits at 95% confidence level are placed on the masses of relevant supersymmetric particles in each of these scenarios. For a massless lightest neutralino, masses up to 580 GeV are excluded for the associated production of the next-to-lightest neutralino and the lightest chargino, assuming gauge-boson mediated decays, whereas for slepton-pair production masses up to 500 GeV are excluded assuming three generations of mass-degenerate sleptons.
Aaboud M., Balek P., Bressler S., Citron Z. H., Duchovni E., Dumancic M., Gross E., Kohler M. K., Lellouch D., Levinson L. J., Mikenberg G., Milov A., Pitt M., Ravinovich I., Shlomi J., Smakhtin V. & Turgeman D.
(2017)
Journal of High Energy Physics.
2017,
11,
86.
The cross section of a top-quark pair produced in association with a photon is measured in proton-proton collisions at a centre-of-mass energy of s=8 TeV with 20.2 fb−1 of data collected by the ATLAS detector at the Large Hadron Collider in 2012. The measurement is performed by selecting events that contain a photon with transverse momentum pT > 15 GeV, an isolated lepton with large transverse momentum, large missing transverse momentum, and at least four jets, where at least one is identified as originating from a b-quark. The production cross section is measured in a fiducial region close to the selection requirements. It is found to be 139 ± 7 (stat.) ± 17 (syst.) fb, in good agreement with the theoretical prediction at next-to-leading order of 151 ± 24 fb. In addition, differential cross sections in the fiducial region are measured as a function of the transverse momentum and pseudorapidity of the photon.[Figure not available: see fulltext.].
We perform a low-mass dark matter search using an exposure of 30 kg×yr with the XENON100 detector. By dropping the requirement of a scintillation signal and using only the ionization signal to determine the interaction energy, we lowered the energy threshold for detection to 0.7 keV for nuclear recoils. No dark matter detection can be claimed because a complete background model cannot be constructed without a primary scintillation signal. Instead, we compute an upper limit on the WIMP-nucleon scattering cross section under the assumption that every event passing our selection criteria could be a signal event. Using an energy interval from 0.7 keV to 9.1 keV, we derive a limit on the spin-independent WIMP-nucleon cross section that excludes WIMPs with a mass of 6 GeV/c2 above 1.4×10-41 cm2 at 90% confidence level.
Aprile E., Arazi L., Breskin A., Budnik R., Duchovni E., Gross E., Itay R., Landsman H., Levinson L., Manfredini A. & Priel N.
(2016)
Journal of Cosmology and Astroparticle Physics.
2016,
4,
27.
The XENON1T experiment is currently in the commissioning phase at the Laboratori Nazionali del Gran Sasso, Italy. In this article we study the experiment's expected sensitivity to the spin-independent WIMP-nucleon interaction cross section, based on Monte Carlo predictions of the electronic and nuclear recoil backgrounds.The total electronic recoil background in 1 tonne fiducial volume and (1, 12) keV electronic recoil equivalent energy region, before applying any selection to discriminate between electronic and nuclear recoils, is (1.80 ± 0.15) centerdot 10−4 (kgcenterdotdaycenterdotkeV)−1, mainly due to the decay of 222Rn daughters inside the xenon target. The nuclear recoil background in the corresponding nuclear recoil equivalent energy region (4, 50) keV, is composed of (0.6 ± 0.1) (tcenterdoty)−1 from radiogenic neutrons, (1.8 ± 0.3) centerdot 10−2 (tcenterdoty)−1 from coherent scattering of neutrinos, and less than 0.01 (tcenterdoty)−1 from muon-induced neutrons. The sensitivity of XENON1T is calculated with the Profile Likelihood Ratio method, after converting the deposited energy of electronic and nuclear recoils into the scintillation and ionization signals seen in the detector. We take into account the systematic uncertainties on the photon and electron emission model, and on the estimation of the backgrounds, treated as nuisance parameters. The main contribution comes from the relative scintillation efficiency Script Leff, which affects both the signal from WIMPs and the nuclear recoil backgrounds. After a 2 y measurement in 1 t fiducial volume, the sensitivity reaches a minimum cross section of 1.6 centerdot 10−47 cm2 at mχ = 50 GeV/c2.
Bressler S., Citron Z. H., Duchovni E., Gross E., Lellouch D., Levinson L. J., Mikenberg G., Milov A., Pitt M. & Roth I.
(2016)
Physical Review D.
93,
5,
052002.
The ATLAS experiment has performed extensive searches for the electroweak production of charginos, neutralinos, and staus. This article summarizes and extends the search for electroweak supersymmetry with new analyses targeting scenarios not covered by previously published searches. New searches use vector-boson fusion production, initial-state radiation jets, and low-momentum lepton final states, as well as multivariate analysis techniques to improve the sensitivity to scenarios with small mass splittings and low-production cross sections. Results are based on 20 fb-1 of proton-proton collision data at √s = 8 TeV recorded with the ATLAS experiment at the Large Hadron Collider. No significant excess beyond Standard Model expectations is observed. The new and existing searches are combined and interpreted in terms of 95% confidence-level exclusion limits in simplified models, where a single production process and decay mode is assumed, as well as within phenomenological supersymmetric models.
Arazi L., Beltrame P., Budnik R., Duchovni E., Gross E., Itay R., Landsman H., Lellouch D., Levinson L. & Vitells O.
(2015)
European Physical Journal C.
75,
11,
p. 1-10
546.
The low-background, VUV-sensitive 3-inch diameter photomultiplier tube R11410 has been developed by Hamamatsu for dark matter direct detection experiments using liquid xenon as the target material. We present the results from the joint effort between the XENON collaboration and the Hamamatsu company to produce a highly radio-pure photosensor (version R11410-21) for the XENON1T dark matter experiment. After introducing the photosensor and its components, we show the methods and results of the radioactive contamination measurements of the individual materials employed in the photomultiplier production. We then discuss the adopted strategies to reduce the radioactivity of the various PMT versions. Finally, we detail the results from screening 286 tubes with ultra-low background germanium detectors, as well as their implications for the expected electronic and nuclear recoil background of the XENON1T experiment.
Arazi L., Budnik R., Duchovni E., Gross E., Itay R., Landsman H., Lellouch D. & Levinson L.
(2015)
Physical Review Letters.
115,
9,
091302.
We have searched for periodic variations of the electronic recoil event rate in the (26) keV energy range recorded between February 2011 and March 2012 with the XENON100 detector, adding up to 224.6 live days in total. Following a detailed study to establish the stability of the detector and its background contributions during this run, we performed an unbinned profile likelihood analysis to identify any periodicity up to 500 days. We find a global significance of less than 1σ for all periods, suggesting no statistically significant modulation in the data. While the local significance for an annual modulation is 2.8σ, the analysis of a multiple-scatter control sample and the phase of the modulation disfavor a dark matter interpretation. The DAMA/LIBRA annual modulation interpreted as a dark matter signature with axial-vector coupling of weakly interacting massive particles to electrons is excluded at 4.8σ.
Aad G., Alon R., Barak L., Bressler S., Citron Z. H., Duchovni E., Gabizon O., Gross E., Groth-Jensen J., Lellouch D., Levinson L. J., Mikenberg G., Milov A., Milstein D., Roth I., Schaarschmidt J., Silbert O., Smakhtin V. & Vitells O.
(2015)
European Physical Journal C.
75,
1,
17.
The jet energy scale (JES) and its systematic uncertainty are determined for jets measured with the ATLAS detector using protonproton collision data with a centre-ofmass energy of √s = 7 TeV corresponding to an integrated luminosity of 4.7 fb−1. Jets are reconstructed from energy deposits forming topological clusters of calorimeter cells using the anti-kt algorithm with distance parameters R = 0.4 or R = 0.6, and are calibrated using MC simulations. A residual JES correction is applied to account for differences between data and MC simulations. This correction and its systematic uncertainty are estimated using a combination of in situ techniques exploiting the transverse momentum balance between a jet and a For central jets at lower pT a Z boson, for 20 ≤ pjetT < 1000 GeV and pseudorapidities |η| < 4.5. The effect of multiple protonproton interactions is corrected for, and an uncertainty is evaluated using in situ techniques. The smallest JES uncertainty of less than 1 % is found in the central calorimeter region (|η| < 1.2) for jets with 55 ≤ pjetT < 500 GeV. For central jets at lower pT, the uncertainty is about 3 %. A consistent JES estimate is found using measurements of the calorimeter response of single hadrons in protonproton collisions and test-beam data, which also provide the estimate for pjetT > 1 TeV. The calibration of forward jets is derived from dijet pT balance measurements. The resulting uncertainty reaches its largest value of 6 % for low-pT jets at |η| =4.5. Additional JES uncertainties due to specific event topologies, such as close-by jets or selections of event samples with an enhanced content of jets originating from light quarks or gluons, are also discussed. The magnitude of these uncertainties depends on the event sample used in a given physics analysis, but typically amounts to 0.53 %.
Aad G., Alon R., Barak L., Bressler S., Citron Z. H., Duchovni E., Gabizon O., Gross E., Groth-Jensen J., Lellouch D., Levinson L. J., Mikenberg G., Milov A., Milstein D., Roth I., Schaarschmidt J., Silbert O., Smakhtin V. & Vitells O.
(2014)
New Journal of Physics.
16,
113013.
This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of and correspond to an integrated luminosity of . The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum and pseudorapidity , is measured to be pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques.
Aprile E., Agostini F., Alfonsi M., Arisaka K., Arneodo F., Auger M., Balan C., Barrow P., Baudis L., Bauermeister B., Behrens A., Beltrame P., Bokeloh K., Breskin A., Brown A., Brown E., Bruenner S., Bruno G., Budnik R., Cardoso J. M. R., Colijn A. P., Contreras H., Cussonneau J. P., Decowski M. P., Duchovni E., Fattori S., Ferella A. D., Fulgione W., Garbini M., Geis C., Goetzke L. W., Grignon C., Gross E., Hampel W., Itay R., Kaether F., Kessler G., Kish A., Landsman H., Lang R. F., Le Calloch C. M., Lellouch D., Levinson L., Levy C., Lindemann S., Lindner M., Lopes J. A. M., Lung K., Lyashenko A., MacMullin S., Undagoitia T. M., Masbou J., Massoli F. V., Paras D. M., Fernandez A. J. M., Meng Y., Messina M., Miguez B., Molinario A., Morana G., Murra M., Naganoma J., Oberlack U., Orrigo S. E. A., Pantic E., Persiani R., Piastra F., Pienaar J., Plante G., Priel N., Reichard S., Reuter C., Rizzo A., Rosendahl S., dos Santos S. J. M. F., Sartorelli G., Schindler S., Schreiner J., Schumann M., Lavina L. S., Selvi M., Shagin P., Simgen H., Teymourian A., Thers D., Tiseni A., Trinchero G., Vitells O., Wang H., Weber M. & Weinheimer C.
(2014)
Journal of Instrumentation.
9,
11,
P11006.
XENON is a dark matter direct detection project, consisting of a time projection chamber (TPC) filled with liquid xenon as detection medium. The construction of the next generation detector, XENON1T, is presently taking place at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It aims at a sensitivity to spin-independent cross sections of 2·10-47 c 2 for WIMP masses around 50 GeV2, which requires a background reduction by two orders of magnitude compared to XENON100, the current generation detector. An active system that is able to tag muons and muon-induced backgrounds is critical for this goal. A water Cherenkov detector of ∼ 10 m height and diameter has been therefore developed, equipped with 8 inch photomultipliers and cladded by a reflective foil. We present the design and optimization study for this detector, which has been carried out with a series of Monte Carlo simulations. The muon veto will reach very high detection efficiencies for muons (>99.5%) and showers of secondary particles from muon interactions in the rock (>70%). Similar efficiencies will be obtained for XENONnT, the upgrade of XENON1T, which will later improve the WIMP sensitivity by another order of magnitude. With the Cherenkov water shield studied here, the background from muon-induced neutrons in XENON1T is negligible.
Bressler S., Citron Z. H., Duchovni E., Gabizon O., Gross E., Groth-Jensen J., Lellouch D., Levinson L. J., Mikenberg G., Milov A., Milstein D., Pitt M. & Roth I.
(2014)
Journal of High Energy Physics.
2014,
10,
96.
Results of a search for the electroweak associated production of charginos and next-to-lightest neutralinos, pairs of charginos or pairs of tau sleptons are presented. These processes are characterised by final states with at least two hadronically decaying tau leptons, missing transverse momentum and low jet activity. The analysis is based on an integrated luminosity of 20.3 fb-1 of proton-proton collisions at√s = 8 TeV recorded with the ATLAS experiment at the Large Hadron Collider. No significant excess is observed with respect to the predictions from Standard Model processes. Limits are set at 95% confidence level on the masses of the lighter chargino and next-to-lightest neutralino for various hypotheses for the lightest neutralino mass in simplified models. In the scenario of direct production of chargino pairs, with each chargino decaying into the lightest neutralino via an intermediate tau slepton, chargino masses up to 345 GeV are excluded for a massless lightest neutralino. For associated production of mass-degenerate charginos and next-to-lightest neutralinos, both decaying into the lightest neutralino via an intermediate tau slepton, masses up to 410 GeV are excluded for a massless lightest neutralino.
Aprile E., Agostini F., Alfonsi M., Arisaka K., Arneodo F., Auger M., Balan C., Barrow P., Baudis L., Bauermeister B., Behrens A., Beltrame P., Bokeloh K., Brown A., Brown E., Bruenner S., Bruno G., Budnik R., Cardoso J., Colijn A., Contreras H., Cussonneau J., Decowski M., Duchovni E., Fattori S., Ferella A., Fulgione W., Gao F., Garbini M., Geis C., Goetzke L., Grignon C., Gross E., Hampel W., Itay R., Kaether F., Kessler G., Kish A., Landsman H., Lang R., Le Calloch C. M., Lellouch D., Levy C., Lindemann S., Lindner M., Lopes J., Lung K., Lyashenko A., MacMullin S., Undagoitia T., Masbou J., Massoli F., Paras D., Fernandez A., Meng Y., Messina M., Miguez B., Molinario A., Murra M., Naganoma J., Ni K., Oberlack U., Orrigo S., Pantic E., Persiani R., Piastra F., Pienaar J., Plante G., Priel N., Reichard S., Reuter C., Rizzo A., Rosendahl S., dos Santos S. J., Sartorelli G., Schindler S., Schreiner J., Schumann M., Lavina L., Selvi M., Shagin P., Simgen H., Teymourian A., Thers D., Tiseni A., Trinchero G., Vitells O., Wang H., Weber M. & Weinheimer C.
(2014)
Physical Review D.
90,
6,
062009.
We present the first results of searches for axions and axionlike particles with the XENON100 experiment. The axion-electron coupling constant, gAe, has been probed by exploiting the axioelectric effect in liquid xenon. A profile likelihood analysis of 224.6 live days × 34-kg exposure has shown no evidence for a signal. By rejecting gAe larger than 7.7×10-12 (90% C.L.) in the solar axion search, we set the best limit to date on this coupling. In the frame of the DFSZ and KSVZ models, we exclude QCD axions heavier than 0.3 and 80eV/c2, respectively. For axionlike particles, under the assumption that they constitute the whole abundance of dark matter in our galaxy, we constrain gAe to be lower than 1×10-12 (90% C.L.) for masses between 5 and 10keV/c2.
Aprile E., Alfonsi M., Arisaka K., Arneodo F., Balan C., Baudis L., Bauermeister B., Behrens A., Beltrame P., Bokeloh K., Brown A., Brown E., Bruenner S., Bruno G., Budnik R., Cardoso J. M. R., Chen W., Choi B., Colijn A. P., Contreras H., Cussonneau J. P., Decowski M. P., Duchovni E., Fattori S., Ferella A. D., Fulgione W., Gao F., Garbini M., Ghag C., Giboni K., Goetzke L. W., Grignon C., Gross E., Hampel W., Itay R., Kaether F., Kessler G., Kish A., Lamblin J., Landsman H., Lang R. F., Le Calloch C. M., Levy C., Lim K. E., Lin Q., Lindemann S., Lindner M., Lopes J. A. M., Lung K., Undagoitia T. M., Massoli F. V., Fernandez A. J. M., Meng Y., Messina M., Molinario A., Naganoma J., Ni K., Oberlack U., Orrigo S. E. A., Pantic E., Persiani R., Piastra F., Plante G., Priel N., Rizzo A., Rosendahl S., dos Santos S. J. M. F., Sartorelli G., Schreiner J., Schumann M., Lavina L. S., Selvi M., Shagin P., Simgen H., Teymourian A., Thers D., Vitells O., Wang H., Weber M. & Weinheimer C.
(2014)
Journal Of Physics G-Nuclear And Particle Physics.
41,
3,
035201.
The XENON100 dark matter experiment uses liquid xenon in a time projection chamber (TPC) to measure xenon nuclear recoils resulting from the scattering of dark matter weakly interacting massive particles (WIMPs). In this paper, we report the observation of single-electron charge signals which are not related to WIMP interactions. These signals, which show the excellent sensitivity of the detector to small charge signals, are explained as being due to the photoionization of impurities in the liquid xenon and of the metal components inside the TPC. They are used as a unique calibration source to characterize the detector. We explain how we can infer crucial parameters for the XENON100 experiment: the secondary-scintillation gain, the extraction yield from the liquid to the gas phase and the electron drift velocity.
Aprile E., Alfonsi M., Arisaka K., Arneodo F., Balan C., Baudis L., Behrens A., Beltrame P., Bokeloh K., Brown E., Bruno G., Budnik R., Cardoso J., Chen W., Choi B., Cline D., Contreras H., Cussonneau J., Decowski M., Duchovni E., Fattorii S., Ferella A., Fulgione W., Gao F., Garbini M., Giboni K., Goetzke L., Grignon C., Gross E., Hampel W., Kish A., Lamblin J., Landsman H., Lang R., Le Calloch C. M., Levy C., Lim K., Lin Q., Lindemann S., Lindner M., Lopes J., Lung K., Undagoitia T., Massoli F., Mei Y., Fernandez A., Meng Y., Molinario A., Nativ E., Ni K., Oberlack U., Orrigo S., Pantic E., Persiani R., Plante G., Priel N., Rizzo A., Rosendahl S., dos Santos S. J., Sartorelli G., Schreiner J., Schumann M., Lavina L., Scovell P., Selvi M., Shagin P., Simgen H., Teymourian A., Thers D., Vitells O., Wang H., Weber M. & Weinheimer C.
(2014)
Astroparticle Physics.
54,
p. 11-24
The XENON100 experiment, situated in the Laboratori Nazionali del Gran Sasso, aims at the direct detection of dark matter in the form of weakly interacting massive particles (WIMPs), based on their interactions with xenon nuclei in an ultra low background dual-phase time projection chamber. This paper describes the general methods developed for the analysis of the XENON100 data. These methods have been used in the 100.9 and 224.6 live days science runs from which results on spin-independent elastic, spin-dependent elastic and inelastic WIMP-nucleon cross-sections have already been reported.
Abbiendi G., Ainsley C., Akesson P. F., Alexander G., Anagnostou G., Anderson K. J., Asai S., Axen D., Bailey I., Barberio E., Barillari T., Barlow R. J., Batley R. J., Bechtle P., Behnke T., Bell K. W., Bell P. J., Bella G., Bellerive A., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2012)
European Physical Journal C.
72,
7,
p. 1-22
2076.
A search is made for charged Higgs bosons predicted by Two-Higgs-Doublet extensions of the Standard Model (2HDM) using electron-positron collision data collected by the OPAL experiment at √s = 189-209 GeV, corresponding to an integrated luminosity of approximately 600 pb-1. Charged Higgs bosons are assumed to be pair-produced and to decay into qq̄ τντ or AW±*. No signal is observed. Model-independent limits on the charged Higgs-boson production cross section are derived by combining these results with previous searches at lower energies. Under the assumption BR(H± → τντ) + BR (H± → qq̄) = 1, motivated by general 2HDM type II models, excluded areas on the [mH± BR(H± → τντ)] plane are presented and charged Higgs bosons are excluded up to a mass of 76. 3 GeV at 95 % confidence level, independent of the branching ratio BR(H±→τντ). A scan of the 2HDM type I model parameter space is performed and limits on the Higgs-boson masses mH± and mA are presented for different choices of tanβ.
Vitells O. & Gross E.
(2011)
Astroparticle Physics.
35,
5,
p. 230-234
In experiments that are aimed at detecting astrophysical sources such as neutrino telescopes, one usually performs a search over a continuous parameter space (e.g. the angular coordinates of the sky, and possibly time), looking for the most significant deviation from the background hypothesis. Such a procedure inherently involves a "look elsewhere effect", namely, the possibility for a signal-like fluctuation to appear anywhere within the search range. Correctly estimating the p-value of a given observation thus requires repeated simulations of the entire search, a procedure that may be prohibitively expansive in terms of CPU resources. Recent results from the theory of random fields provide powerful tools which may be used to alleviate this difficulty, in a wide range of applications. We review those results and discuss their implementation, with a detailed example applied for neutrino point source analysis in the IceCube experiment.
Aprile E., Arisaka K., Arneodo F., Askin A., Baudis L., Behrens A., Bokeloh K., Brown E., Bruch T., Cardoso J. M. R., Choi B., Cline D., Duchovni E., Fattori S., Ferella A. D., Giboni K. -., Gross E., Kish A. & Lam C. W.
(2011)
Physical Review D.
84,
5,
052003.
Many experiments that aim at the direct detection of dark matter are able to distinguish a dominant background from the expected feeble signals, based on some measured discrimination parameter. We develop a statistical model for such experiments using the profile likelihood ratio as a test statistic in a frequentist approach. We take data from calibrations as control measurements for signal and background, and the method allows the inclusion of data from Monte Carlo simulations. Systematic detector uncertainties, such as uncertainties in the energy scale, as well as astrophysical uncertainties, are included in the model. The statistical model can be used to either set an exclusion limit or to quantify a discovery claim, and the results are derived with the proper treatment of statistical and systematic uncertainties. We apply the model to the first data release of the XENON100 experiment, which allows one to extract additional information from the data, and place stronger limits on the spin-independent elastic weakly interacting massive particles nucleon scattering cross section. In particular, we derive a single limit, including all relevant systematic uncertainties, with a minimum of 2.4×10-44cm2 for weakly interacting massive particles with a mass of 50GeV/c2.
Aad G., Abbott B., Abdallah J., Abdelalim A. A., Abdesselam A., Abdinov O., Abi B., Abolins M., Abramowicz H., Abreu H., Acerbi E., Acharya B. S., Adams D. L., Addy T. N., Adelman J., Aderholz M., Adomeit S., Adragna P., Adye T., Aefsky S., Aguilar-Saavedra J. A., Aharrouche M., Ahlen S. P., Ahles F., Ahmad A., Ahsan M., Aielli G., Akdogan T., Åkesson T. P., Akimoto G., Akimov A. V., Akiyama A., Alam M. S., Alam M. A., Albrand S., Aleksa M., Aleksandrov I. N., Alessandria F., Alexa C., Alexander G., Alexandre G., Alexopoulos T., Alhroob M., Aliev M., Alimonti G., Alison J., Aliyev M., Allport P. P., Allwood-Spiers S. E., Almond J., Aloisio A., Alon R., Alonso A., Alviggi M. G., Amako K., Amaral P., Amelung C., Ammosov V. V., Amorim A., Amorós G., Amram N., Anastopoulos C., Andari N., Andeen T., Anders C. F., Anderson K. J., Andreazza A., Andrei V., Andrieux M. L., Anduaga X. S., Angerami A., Anghinolfi F., Anjos N., Annovi A., Antonaki A., Antonelli M., Antonov A., Antos J., Anulli F., Aoun S., Aperio Bella L., Apolle R., Arabidze G., Aracena I., Arai Y., Arce A. T., Archambault J. P., Arfaoui S., Arguin J. F., Arik E., Arik M., Armbruster A. J., Arnaez O., Arnault C., Artamonov A., Artoni G., Arutinov D., Asai S., Asfandiyarov R., Ask S., Åsman B., Asquith L., Assamagan K., Astbury A., Astvatsatourov A., Atoian G., Aubert B., Auerbach B., Auge E., Augsten K., Aurousseau M., Austin N., Avramidou R., Axen D., Ay C., Azuelos G., Azuma Y., Baak M. A., Baccaglioni G., Bacci C., Bach A. M., Bachacou H., Bachas K., Bachy G., Backes M., Backhaus M., Badescu E., Bagnaia P., Bahinipati S., Bai Y., Bailey D. C., Bain T., Baines J. T., Baker O. K., Baker M. D., Baker S., Baltasar Dos Santos Pedrosa F., Banas E., Banerjee P., Banerjee S., Banfi D., Bangert A., Bansal V., Bansil H. S., Barak L., Baranov S. P., Barashkou A., Barbaro Galtieri A., Barber T., Barberio E. L., Barberis D., Barbero M., Bardin D. Y., Barillari T., Barisonzi M., Barklow T., Barlow N., Barnett B. M., Barnett R. M., Baroncelli A., Barr A. J., Barreiro F., Barreiro Guimarães da Costa J., Barrillon P., Bartoldus R., Barton A. E., Bartsch D., Bartsch V., Bates R. L., Batkova L., Batley J. R., Battaglia A., Battistin M., Battistoni G., Bauer F., Bawa H. S., Beare B., Beau T., Beauchemin P. H., Beccherle R., Bechtle P., Beck H. P., Beckingham M., Becks K. H., Beddall A. J., Beddall A., Bedikian S., Bednyakov V. A., Bee C. P., Begel M., Behar Harpaz S., Behera P. K., Beimforde M., Belanger-Champagne C., Bell P. J., Bell W. H., Bella G., Bellagamba L., Bellina F., Bellomo M., Belloni A., Beloborodova O., Belotskiy K., Beltramello O., Ben Ami S., Benary O., Benchekroun D., Benchouk C., Bendel M., Benedict B. H., Benekos N., Benhammou Y., Benjamin D. P., Benoit M., Bensinger J. R., Benslama K., Bentvelsen S., Berge D., Bergeaas Kuutmann E., Berger N., Berghaus F., Berglund E., Beringer J., Bernardet K., Bernat P., Bernhard R., Bernius C., Berry T., Bertin A., Bertinelli F., Bertolucci F., Besana M. I., Besson N., Bethke S., Bhimji W., Bianchi R. M., Bianco M., Biebel O., Bieniek S. P., Biesiada J., Biglietti M., Bilokon H., Bindi M., Binet S., Bingul A., Bini C., Biscarat C., Bitenc U., Black K. M., Blair R. E., Blanchard J. B., Blanchot G., Blazek T., Blocker C., Blocki J., Blondel A., Blum W., Blumenschein U., Bobbink G. J., Bobrovnikov V. B., Bocchetta S. S., Bocci A., Boddy C. R., Boehler M., Boek J., Boelaert N., Böser S., Bogaerts J. A., Bogdanchikov A., Bogouch A., Bohm C., Boisvert V., Bold T., Boldea V., Bolnet N. M., Bona M., Bondarenko V. G., Boonekamp M., Boorman G., Booth C. N., Bordoni S., Borer C., Borisov A., Borissov G., Borjanovic I., Borroni S., Bos K., Boscherini D., Bosman M., Boterenbrood H., Botterill D., Bouchami J., Boudreau J., Bouhova-Thacker E. V., Boulahouache C., Bourdarios C., Bousson N., Boveia A., Boyd J., Boyko I. R., Bozhko N. I., Bozovic-Jelisavcic I., Bracinik J., Braem A., Branchini P., Brandenburg G. W., Brandt A., Brandt G., Brandt O., Bratzler U., Brau B., Brau J. E., Braun H. M., Brelier B., Bremer J., Brenner R., Bressler S., Breton D., Britton D., Brochu F. M., Brock I., Brock R., Brodbeck T. J., Brodet E., Broggi F., Bromberg C., Brooijmans G., Brooks W. K., Brown G., Brown H., Bruckman de Renstrom P. A., Bruncko D., Bruneliere R., Brunet S., Bruni A., Bruni G., Bruschi M., Buanes T., Bucci F., Buchanan J., Buchanan N. J., Buchholz P., Buckingham R. M., Buckley A. G., Buda S. I., Budagov I. A., Budick B., Büscher V., Bugge L., Buira-Clark D., Bulekov O., Bunse M., Buran T., Burckhart H., Burdin S., Burgess T., Burke S., Busato E., Bussey P., Buszello C. P., Butin F., Butler B., Butler J. M., Buttar C. M., Butterworth J. M., Buttinger W., Byatt T., Cabrera Urbán S., Caforio D., Cakir O., Calafiura P., Calderini G., Calfayan P., Calkins R., Caloba L. P., Caloi R., Calvet D., Calvet S., Camacho Toro R., Camarri P., Cambiaghi M., Cameron D., Campana S., Campanelli M., Canale V., Canelli F., Canepa A., Cantero J., Capasso L., Capeans Garrido M. D., Caprini I., Caprini M., Capriotti D., Capua M., Caputo R., Caramarcu C., Cardarelli R., Carli T., Carlino G., Carminati L., Caron B., Caron S., Carrillo Montoya G. D., Carter A. A., Carter J. R., Carvalho J., Casadei D., Casado M. P., Cascella M., Caso C., Castaneda Hernandez A. M., Castaneda-Miranda E., Castillo Gimenez V., Castro N. F., Cataldi G., Cataneo F., Catinaccio A., Catmore J. R., Cattai A., Cattani G., Caughron S., Cauz D., Cavalleri P., Cavalli D., Cavalli-Sforza M., Cavasinni V., Ceradini F., Cerqueira A. S., Cerri A., Cerrito L., Cerutti F., Cetin S. A., Cevenini F., Chafaq A., Chakraborty D., Chan K., Chapleau B., Chapman J. D., Chapman J. W., Chareyre E., Charlton D. G., Chavda V., Chavez Barajas C. A., Cheatham S., Chekanov S., Chekulaev S. V., Chelkov G. A., Chelstowska M. A., Chen C., Chen H., Chen S., Chen T., Chen X., Cheng S., Cheplakov A., Chepurnov V. F., Cherkaoui El Moursli R., Chernyatin V., Cheu E., Cheung S. L., Chevalier L., Chiefari G., Chikovani L., Childers J. T., Chilingarov A., Chiodini G., Chizhov M. V., Choudalakis G., Chouridou S., Christidi I. A., Christov A., Chromek-Burckhart D., Chu M. L., Chudoba J., Ciapetti G., Ciba K., Ciftci A. K., Ciftci R., Cinca D., Cindro V., Ciobotaru M. D., Ciocca C., Ciocio A., Cirilli M., Ciubancan M., Clark A., Clark P. J., Cleland W., Clemens J. C., Clement B., Clement C., Clifft R. W., Coadou Y., Cobal M., Coccaro A., Cochran J., Coe P., Cogan J. G., Coggeshall J., Cogneras E., Cojocaru C. D., Colas J., Colijn A. P., Collard C., Collins N. J., Collins-Tooth C., Collot J., Colon G., Conde Muiño P., Coniavitis E., Conidi M. C., Consonni M., Consorti V., Constantinescu S., Conta C., Conventi F., Cook J., Cooke M., Cooper B. D., Cooper-Sarkar A. M., Cooper-Smith N. J., Copic K., Cornelissen T., Corradi M., Corriveau F., Cortes-Gonzalez A., Cortiana G., Costa G., Costa M. J., Costanzo D., Costin T., Côté D., Coura Torres R., Courneyea L., Cowan G., Cowden C., Cox B. E., Cranmer K., Crescioli F., Cristinziani M., Crosetti G., Crupi R., Crépé-Renaudin S., Cuciuc C. M., Cuenca Almenar C., Cuhadar Donszelmann T., Cuneo S., Curatolo M., Curtis C. J., Cwetanski P., Czirr H., Czyczula Z., D'Auria S., D'Onofrio M., D'Orazio A., Da Silva P. V., Da Via C., Dabrowski W., Dai T., Dallapiccola C., Dam M., Dameri M., Damiani D. S., Danielsson H. O., Dannheim D., Dao V., Darbo G., Darlea G. L., Daum C., Dauvergne J. P., Davey W., Davidek T., Davidson N., Davidson R., Davies E., Davies M., Davison A. R., Davygora Y., Dawe E., Dawson I., Dawson J. W., Daya R. K., De K., de Asmundis R., De Castro S., De Castro Faria Salgado P. E., De Cecco S., de Graat J., De Groot N., de Jong P., De La Taille C., De la Torre H., De Lotto B., De Mora L., De Nooij L., De Oliveira Branco M., De Pedis D., de Saintignon P., De Salvo A., De Sanctis U., De Santo A., De Vivie De Regie J. B., Dean S., Dedovich D. V., Degenhardt J., Dehchar M., Deile M., Del Papa C., Del Peso J., Del Prete T., Deliyergiyev M., Dell'Acqua A., Dell'Asta L., Della Pietra M., della Volpe D., Delmastro M., Delpierre P., Delruelle N., Delsart P. A., Deluca C., Demers S., Demichev M., Demirkoz B., Deng J., Denisov S. P., Derendarz D., Derkaoui J. E., Derue F., Dervan P., Desch K., Devetak E., Deviveiros P. O., Dewhurst A., DeWilde B., Dhaliwal S., Dhullipudi R., Di Ciaccio A., Di Ciaccio L., Di Girolamo A., Di Girolamo B., Di Luise S., Di Mattia A., Di Micco B., Di Nardo R., Di Simone A., Di Sipio R., Diaz M. A., Diblen F., Diehl E. B., Dietrich J., Dietzsch T. A., Diglio S., Dindar Yagci K., Dingfelder J., Dionisi C., Dita P., Dita S., Dittus F., Djama F., Djobava T., do Vale M. A., Do Valle Wemans A., Doan T. K., Dobbs M., Dobinson R., Dobos D., Dobson E., Dobson M., Dodd J., Doglioni C., Doherty T., Doi Y., Dolejsi J., Dolenc I., Dolezal Z., Dolgoshein B. A., Dohmae T., Donadelli M., Donega M., Donini J., Dopke J., Doria A., Dos Anjos A., Dosil M., Dotti A., Dova M. T., Dowell J. D., Doxiadis A. D., Doyle A. T., Drasal Z., Drees J., Dressnandt N., Drevermann H., Driouichi C., Dris M., Dubbert J., Dubbs T., Dube S., Duchovni E., Duckeck G., Dudarev A., Dudziak F., Dührssen M., Duerdoth I. P., Duflot L., Dufour M. A., Dunford M., Duran Yildiz H., Duxfield R., Dwuznik M., Dydak F., Dzahini D., Düren M., Ebenstein W. L., Ebke J., Eckert S., Eckweiler S., Edmonds K., Edwards C. A., Edwards N. C., Ehrenfeld W., Ehrich T., Eifert T., Eigen G., Einsweiler K., Eisenhandler E., Ekelof T., El Kacimi M., Ellert M., Elles S., Ellinghaus F., Ellis K., Ellis N., Elmsheuser J., Elsing M., Ely R., Emeliyanov D., Engelmann R., Engl A., Epp B., Eppig A., Erdmann J., Ereditato A., Eriksson D., Ernst J., Ernst M., Ernwein J., Errede D., Errede S., Ertel E., Escalier M., Escobar C., Espinal Curull X., Esposito B., Etienne F., Etienvre A. I., Etzion E., Evangelakou D., Evans H., Fabbri L., Fabre C., Fakhrutdinov R. M., Falciano S., Fang Y., Fanti M., Farbin A., Farilla A., Farley J., Farooque T., Farrington S. M., Farthouat P., Fassnacht P., Fassouliotis D., Fatholahzadeh B., Favareto A., Fayard L., Fazio S., Febbraro R., Federic P., Fedin O. L., Fedorko W., Fehling-Kaschek M., Feligioni L., Fellmann D., Felzmann C. U., Feng C., Feng E. J., Fenyuk A. B., Ferencei J., Ferland J., Fernando W., Ferrag S., Ferrando J., Ferrara V., Ferrari A., Ferrari P., Ferrari R., Ferrer A., Ferrer M. L., Ferrere D., Ferretti C., Ferretto Parodi A., Fiascaris M., Fiedler F., Filipcic A., Filippas A., Filthaut F., Fincke-Keeler M., Fiolhais M. C., Fiorini L., Firan A., Fischer G., Fischer P., Fisher M. J., Fisher S. M., Flechl M., Fleck I., Fleckner J., Fleischmann P., Fleischmann S., Flick T., Flores Castillo L. R., Flowerdew M. J., Föhlisch F., Fokitis M., Fonseca Martin T., Forbush D. A., Formica A., Forti A., Fortin D., Foster J. M., Fournier D., Foussat A., Fowler A. J., Fowler K., Fox H., Francavilla P., Franchino S., Francis D., Frank T., Franklin M., Franz S., Fraternali M., Fratina S., French S. T., Froeschl R., Froidevaux D., Frost J. A., Fukunaga C., Fullana Torregrosa E., Fuster J., Gabaldon C., Gabizon O., Gadfort T., Gadomski S., Gagliardi G., Gagnon P., Galea C., Gallas E. J., Gallas M. V., Gallo V., Gallop B. J., Gallus P., Galyaev E., Gan K. K., Gao Y. S., Gapienko V. A., Gaponenko A., Garberson F., Garcia-Sciveres M., García C., García Navarro J. E., Gardner R. W., Garelli N., Garitaonandia H., Garonne V., Garvey J., Gatti C., Gaudio G., Gaumer O., Gaur B., Gauthier L., Gavrilenko I. L., Gay C., Gaycken G., Gayde J. C., Gazis E. N., Ge P., Gee C. N., Geerts D. A., Geich-Gimbel C., Gellerstedt K., Gemme C., Gemmell A., Genest M. H., Gentile S., George M., George S., Gerlach P., Gershon A., Geweniger C., Ghazlane H., Ghez P., Ghodbane N., Giacobbe B., Giagu S., Giakoumopoulou V., Giangiobbe V., Gianotti F., Gibbard B., Gibson A., Gibson S. M., Gilbert L. M., Gilchriese M., Gilewsky V., Gillberg D., Gillman A. R., Gingrich D. M., Ginzburg J., Giokaris N., Giordano R., Giorgi F. M., Giovannini P., Giraud P. F., Giugni D., Giusti P., Gjelsten B. K., Gladilin L. K., Glasman C., Glatzer J., Glazov A., Glitza K. W., Glonti G. L., Godfrey J., Godlewski J., Goebel M., Göpfert T., Goeringer C., Gössling C., Göttfert T., Goldfarb S., Goldin D., Golling T., Golovnia S. N., Gomes A., Gomez Fajardo L. S., Gonçalo R., Goncalves Pinto Firmino Da Costa J., Gonella L., Gonidec A., Gonzalez S., González de la Hoz S., Gonzalez Silva M. L., Gonzalez-Sevilla S., Goodson J. J., Goossens L., Gorbounov P. A., Gordon H. A., Gorelov I., Gorfine G., Gorini B., Gorini E., Gorišek A., Gornicki E., Gorokhov S. A., Goryachev V. N., Gosdzik B., Gosselink M., Gostkin M. I., Gouanère M., Gough Eschrich I., Gouighri M., Goujdami D., Goulette M. P., Goussiou A. G., Goy C., Grabowska-Bold I., Grabski V., Grafström P., Grah C., Grahn K. J., Grancagnolo F., Grancagnolo S., Grassi V., Gratchev V., Grau N., Gray H. M., Gray J. A., Graziani E., Grebenyuk O. G., Greenfield D., Greenshaw T., Greenwood Z. D., Gregor I. M., Grenier P., Griffiths J., Grigalashvili N., Grillo A. A., Grinstein S., Grishkevich Y. V., Grivaz J. F., Grognuz J., Groh M., Gross E., Grosse-Knetter J., Groth-Jensen J., Grybel K., Guarino V. J., Guest D., Guicheney C., Guida A., Guillemin T., Guindon S., Guler H., Gunther J., Guo B., Guo J., Gupta A., Gusakov Y., Gushchin V. N., Gutierrez A., Gutierrez P., Guttman N., Gutzwiller O., Guyot C., Gwenlan C., Gwilliam C. B., Haas A., Haas S., Haber C., Hackenburg R., Hadavand H. K., Hadley D. R., Haefner P., Hahn F., Haider S., Hajduk Z., Hakobyan H., Haller J., Hamacher K., Hamal P., Hamilton A., Hamilton S., Han H., Han L., Hanagaki K., Hance M., Handel C., Hanke P., Hansen J. R., Hansen J. B., Hansen J. D., Hansen P. H., Hansson P., Hara K., Hare G. A., Harenberg T., Harkusha S., Harper D., Harrington R. D., Harris O. M., Harrison K., Hartert J., Hartjes F., Haruyama T., Harvey A., Hasegawa S., Hasegawa Y., Hassani S., Hatch M., Hauff D., Haug S., Hauschild M., Hauser R., Havranek M., Hawes B. M., Hawkes C. M., Hawkings R. J., Hawkins D., Hayakawa T., Hayden D., Hayward H. S., Haywood S. J., Hazen E., He M., Head S. J., Hedberg V., Heelan L., Heim S., Heinemann B., Heisterkamp S., Helary L., Heller M., Hellman S., Helsens C., Henderson R. C., Henke M., Henrichs A., Henriques Correia A. M., Henrot-Versille S., Henry-Couannier F., Hensel C., Henß T., Hernandez C. M., Hernández Jiménez Y., Herrberg R., Hershenhorn A. D., Herten G., Hertenberger R., Hervas L., Hessey N. P., Hidvegi A., Higón-Rodriguez E., Hill D., Hill J. C., Hill N., Hiller K. H., Hillert S., Hillier S. J., Hinchliffe I., Hines E., Hirose M., Hirsch F., Hirschbuehl D., Hobbs J., Hod N., Hodgkinson M. C., Hodgson P., Hoecker A., Hoeferkamp M. R., Hoffman J., Hoffmann D., Hohlfeld M., Holder M., Holmes A., Holmgren S. O., Holy T., Holzbauer J. L., Homma Y., Hong T. M., Hooft van Huysduynen L., Horazdovsky T., Horn C., Horner S., Horton K., Hostachy J. Y., Hou S., Houlden M. A., Hoummada A., Howarth J., Howell D. F., Hristova I., Hrivnac J., Hruska I., Hryn'ova T., Hsu P. J., Hsu S. C., Huang G. S., Hubacek Z., Hubaut F., Huegging F., Huffman T. B., Hughes E. W., Hughes G., Hughes-Jones R. E., Huhtinen M., Hurst P., Hurwitz M., Husemann U., Huseynov N., Huston J., Huth J., Iacobucci G., Iakovidis G., Ibbotson M., Ibragimov I., Ichimiya R., Iconomidou-Fayard L., Idarraga J., Idzik M., Iengo P., Igonkina O., Ikegami Y., Ikeno M., Ilchenko Y., Iliadis D., Imbault D., Imhaeuser M., Imori M., Ince T., Inigo-Golfin J., Ioannou P., Iodice M., Ionescu G., Irles Quiles A., Ishii K., Ishikawa A., Ishino M., Ishmukhametov R., Issever C., Istin S., Itoh Y., Ivashin A. V., Iwanski W., Iwasaki H., Izen J. M., Izzo V., Jackson B., Jackson J. N., Jackson P., Jaekel M. R., Jain V., Jakobs K., Jakobsen S., Jakubek J., Jana D. K., Jankowski E., Jansen E., Jantsch A., Janus M., Jarlskog G., Jeanty L., Jelen K., Jen-La Plante I., Jenni P., Jeremie A., Jež P., Jézéquel S., Jha M. K., Ji H., Ji W., Jia J., Jiang Y., Jimenez Belenguer M., Jin G., Jin S., Jinnouchi O., Joergensen M. D., Joffe D., Johansen L. G., Johansen M., Johansson K. E., Johansson P., Johnert S., Johns K. A., Jon-And K., Jones G., Jones R. W., Jones T. W., Jones T. J., Jonsson O., Joram C., Jorge P. M., Joseph J., Jovin T., Ju X., Juranek V., Jussel P., Kabachenko V. V., Kabana S., Kaci M., Kaczmarska A., Kadlecik P., Kado M., Kagan H., Kagan M., Kaiser S., Kajomovitz E., Kalinin S., Kalinovskaya L. V., Kama S., Kanaya N., Kaneda M., Kanno T., Kantserov V. A., Kanzaki J., Kaplan B., Kapliy A., Kaplon J., Kar D., Karagoz M., Karnevskiy M., Karr K., Kartvelishvili V., Karyukhin A. N., Kashif L., Kasmi A., Kass R. D., Kastanas A., Kataoka M., Kataoka Y., Katsoufis E., Katzy J., Kaushik V., Kawagoe K., Kawamoto T., Kawamura G., Kayl M. S., Kazanin V. A., Kazarinov M. Y., Keates J. R., Keeler R., Kehoe R., Keil M., Kekelidze G. D., Kelly M., Kennedy J., Kenney C. J., Kenyon M., Kepka O., Kerschen N., Kerševan B. P., Kersten S., Kessoku K., Ketterer C., Keung J., Khakzad M., Khalil-zada F., Khandanyan H., Khanov A., Kharchenko D., Kholodenko A. G., Khomich A., Khoo T. J., Khoriauli G., Khoroshilov A., Khovanskiy N., Khovanskiy V., Khramov E., Khubua J., Kim H., Kim M. S., Kim P. C., Kim S. H., Kimura N., Kind O., King B. T., King M., King R. S., Kirk J., Kirsch G. P., Kirsch L. E., Kiryunin A. E., Kisielewska D., Kittelmann T., Kiver A. M., Kiyamura H., Kladiva E., Klaiber-Lodewigs J., Klein M., Klein U., Kleinknecht K., Klemetti M., Klier A., Klimentov A., Klingenberg R., Klinkby E. B., Klioutchnikova T., Klok P. F., Klous S., Kluge E. E., Kluge T., Kluit P., Kluth S., Kneringer E., Knobloch J., Knoops E. B., Knue A., Ko B. R., Kobayashi T., Kobel M., Kocian M., Kocnar A., Kodys P., Köneke K., König A. C., Koenig S., Köpke L., Koetsveld F., Koevesarki P., Koffas T., Koffeman E., Kohn F., Kohout Z., Kohriki T., Koi T., Kokott T., Kolachev G. M., Kolanoski H., Kolesnikov V., Koletsou I., Koll J., Kollar D., Kollefrath M., Kolya S. D., Komar A. A., Komaragiri J. R., Komori Y., Kondo T., Kono T., Kononov A. I., Konoplich R., Konstantinidis N., Kootz A., Koperny S., Kopikov S. V., Korcyl K., Kordas K., Koreshev V., Korn A., Korol A., Korolkov I., Korolkova E. V., Korotkov V. A., Kortner O., Kortner S., Kostyukhin V. V., Kotamäki M. J., Kotov S., Kotov V. M., Kotwal A., Kourkoumelis C., Kouskoura V., Koutsman A., Kowalewski R., Kowalski T. Z., Kozanecki W., Kozhin A. S., Kral V., Kramarenko V. A., Kramberger G., Krasel O., Krasny M. W., Krasznahorkay A., Kraus J., Kreisel A., Krejci F., Kretzschmar J., Krieger N., Krieger P., Kroeninger K., Kroha H., Kroll J., Kroseberg J., Krstic J., Kruchonak U., Krüger H., Kruker T., Krumshteyn Z. V., Kruth A., Kubota T., Kuehn S., Kugel A., Kuhl T., Kuhn D., Kukhtin V., Kulchitsky Y., Kuleshov S., Kummer C., Kuna M., Kundu N., Kunkle J., Kupco A., Kurashige H., Kurata M., Kurochkin Y. A., Kus V., Kuykendall W., Kuze M., Kuzhir P., Kvasnicka O., Kvita J., Kwee R., La Rosa A., La Rotonda L., Labarga L., Labbe J., Lablak S., Lacasta C., Lacava F., Lacker H., Lacour D., Lacuesta V. R., Ladygin E., Lafaye R., Laforge B., Lagouri T., Lai S., Laisne E., Lamanna M., Lampen C. L., Lampl W., Lancon E., Landgraf U., Landon M. P., Landsman H., Lane J. L., Lange C., Lankford A. J., Lanni F., Lantzsch K., Laplace S., Lapoire C., Laporte J. F., Lari T., Larionov A. V., Larner A., Lasseur C., Lassnig M., Lau W., Laurelli P., Lavorato A., Lavrijsen W., Laycock P., Lazarev A. B., Lazzaro A., Le Dortz O., Le Guirriec E., Le Maner C., Le Menedeu E., Lebel C., LeCompte T., Ledroit-Guillon F., Lee H., Lee J. S., Lee S. C., Lee L., Lefebvre M., Legendre M., Leger A., LeGeyt B. C., Legger F., Leggett C., Lehmacher M., Lehmann Miotto G., Lei X., Leite M. A., Leitner R., Lellouch D., Lellouch J., Leltchouk M., Lendermann V., Leney K. J., Lenz T., Lenzen G., Lenzi B., Leonhardt K., Leontsinis S., Leroy C., Lessard J. R., Lesser J., Lester C. G., Leung Fook Cheong A., Levêque J., Levin D., Levinson L. J., Levitski M. S., Lewandowska M., Lewis A., Lewis G. H., Leyko A. M., Leyton M., Li B., Li H., Li S., Li X., Liang Z., Liang Z., Liberti B., Lichard P., Lichtnecker M., Lie K., Liebig W., Lifshitz R., Lilley J. N., Limbach C., Limosani A., Limper M., Lin S. C., Linde F., Linnemann J. T., Lipeles E., Lipinsky L., Lipniacka A., Liss T. M., Lissauer D., Lister A., Litke A. M., Liu C., Liu D., Liu H., Liu J. B., Liu M., Liu S., Liu Y., Livan M., Livermore S. S., Lleres A., Llorente Merino J., Lloyd S. L., Lobodzinska E., Loch P., Lockman W. S., Lockwitz S., Loddenkoetter T., Loebinger F. K., Loginov A., Loh C. W., Lohse T., Lohwasser K., Lokajicek M., Loken J., Lombardo V. P., Long R. E., Lopes L., Lopez Mateos D., Losada M., Loscutoff P., Lo Sterzo F., Losty M. J., Lou X., Lounis A., Loureiro K. F., Love J., Love P. A., Lowe A. J., Lu F., Lubatti H. J., Luci C., Lucotte A., Ludwig A., Ludwig D., Ludwig I., Ludwig J., Luehring F., Luijckx G., Lumb D., Luminari L., Lund E., Lund-Jensen B., Lundberg B., Lundberg J., Lundquist J., Lungwitz M., Lupi A., Lutz G., Lynn D., Lys J., Lytken E., Ma H., Ma L. L., Macana Goia J. A., Maccarrone G., Macchiolo A., Maček B., Machado Miguens J., Macina D., Mackeprang R., Madaras R. J., Mader W. F., Maenner R., Maeno T., Mättig P., Mättig S., Magalhaes Martins P. J., Magnoni L., Magradze E., Mahalalel Y., Mahboubi K., Mahout G., Maiani C., Maidantchik C., Maio A., Majewski S., Makida Y., Makovec N., Mal P., Malecki P., Malecki P., Maleev V. P., Malek F., Mallik U., Malon D., Maltezos S., Malyshev V., Malyukov S., Mameghani R., Mamuzic J., Manabe A., Mandelli L., Mandić I., Mandrysch R., Maneira J., Mangeard P. S., Manjavidze I. D., Mann A., Manning P. M., Manousakis-Katsikakis A., Mansoulie B., Manz A., Mapelli A., Mapelli L., March L., Marchand J. F., Marchese F., Marchiori G., Marcisovsky M., Marin A., Marino C. P., Marroquim F., Marshall R., Marshall Z., Martens F. K., Marti-Garcia S., Martin A. J., Martin B., Martin B., Martin F. F., Martin J. P., Martin P., Martin T. A., Martin dit Latour B., Martinez M., Martinez Outschoorn V., Martyniuk A. C., Marx M., Marzano F., Marzin A., Masetti L., Mashimo T., Mashinistov R., Masik J., Maslennikov A. L., Maß M., Massa I., Massaro G., Massol N., Mastrandrea P., Mastroberardino A., Masubuchi T., Mathes M., Matricon P., Matsumoto H., Matsunaga H., Matsushita T., Mattravers C., Maugain J. M., Maxfield S. J., Maximov D. A., May E. N., Mayne A., Mazini R., Mazur M., Mazzanti M., Mazzoni E., Mc Kee S. P., McCarn A., McCarthy R. L., McCarthy T. G., McCubbin N. A., McFarlane K. W., Mcfayden J. A., McGlone H., Mchedlidze G., McLaren R. A., Mclaughlan T., McMahon S. J., McPherson R. A., Meade A., Mechnich J., Mechtel M., Medinnis M., Meera-Lebbai R., Meguro T., Mehdiyev R., Mehlhase S., Mehta A., Meier K., Meinhardt J., Meirose B., Melachrinos C., Mellado Garcia B. R., Mendoza Navas L., Meng Z., Mengarelli A., Menke S., Menot C., Meoni E., Mercurio K. M., Mermod P., Merola L., Meroni C., Merritt F. S., Messina A., Metcalfe J., Mete A. S., Meuser S., Meyer C., Meyer J. P., Meyer J., Meyer J., Meyer T. C., Meyer W. T., Miao J., Michal S., Micu L., Middleton R. P., Miele P., Migas S., Mijovic L., Mikenberg G., Mikestikova M., Mikuž M., Miller D. W., Miller R. J., Mills W. J., Mills C., Milov A., Milstead D. A., Milstein D., Minaenko A. A., Miñano M., Minashvili I. A., Mincer A. I., Mindur B., Mineev M., Ming Y., Mir L. M., Mirabelli G., Miralles Verge L., Misiejuk A., Mitrevski J., Mitrofanov G. Y., Mitsou V. A., Mitsui S., Miyagawa P. S., Miyazaki K., Mjörnmark J. U., Moa T., Mockett P., Moed S., Moeller V., Mönig K., Möser N., Mohapatra S., Mohn B., Mohr W., Mohrdieck-Möck S., Moisseev A. M., Moles-Valls R., Molina-Perez J., Monk J., Monnier E., Montesano S., Monticelli F., Monzani S., Moore R. W., Moorhead G. F., Mora Herrera C., Moraes A., Morais A., Morange N., Morel J., Morello G., Moreno D., Moreno Llácer M., Morettini P., Morii M., Morin J., Morita Y., Morley A. K., Mornacchi G., Morone M. C., Morozov S. V., Morris J. D., Morvaj L., Moser H. G., Mosidze M., Moss J., Mount R., Mountricha E., Mouraviev S. V., Moyse E. J., Mudrinic M., Mueller F., Mueller J., Mueller K., Müller T. A., Muenstermann D., Muijs A., Muir A., Munwes Y., Murakami K., Murray W. J., Mussche I., Musto E., Myagkov A. G., Myska M., Nadal J., Nagai K., Nagano K., Nagasaka Y., Nairz A. M., Nakahama Y., Nakamura K., Nakano I., Nanava G., Napier A., Nash M., Nation N. R., Nattermann T., Naumann T., Navarro G., Neal H. A., Nebot E., Nechaeva P., Negri A., Negri G., Nektarijevic S., Nelson A., Nelson S., Nelson T. K., Nemecek S., Nemethy P., Nepomuceno A. A., Nessi M., Nesterov S. Y., Neubauer M. S., Neusiedl A., Neves R. M., Nevski P., Newman P. R., Nickerson R. B., Nicolaidou R., Nicolas L., Nicquevert B., Niedercorn F., Nielsen J., Niinikoski T., Nikiforov A., Nikolaenko V., Nikolaev K., Nikolic-Audit I., Nikolics K., Nikolopoulos K., Nilsen H., Nilsson P., Ninomiya Y., Nisati A., Nishiyama T., Nisius R., Nodulman L., Nomachi M., Nomidis I., Nordberg M., Nordkvist B., Norton P. R., Novakova J., Nozaki M., Nožička M., Nozka L., Nugent I. M., Nuncio-Quiroz A. E., Nunes Hanninger G., Nunnemann T., Nurse E., Nyman T., O'Brien B. J., O'Neale S. W., O'Neil D. C., O'Shea V., Oakham F. G., Oberlack H., Ocariz J., Ochi A., Oda S., Odaka S., Odier J., Ogren H., Oh A., Oh S. H., Ohm C. C., Ohshima T., Ohshita H., Ohska T. K., Ohsugi T., Okada S., Okawa H., Okumura Y., Okuyama T., Olcese M., Olchevski A. G., Oliveira M., Oliveira Damazio D., Oliver Garcia E., Olivito D., Olszewski A., Olszowska J., Omachi C., Onofre A., Onyisi P. U., Oram C. J., Oreglia M. J., Oren Y., Orestano D., Orlov I., Oropeza Barrera C., Orr R. S., Osculati B., Ospanov R., Osuna C., Otero y Garzon G., Ottersbach J. P., Ouchrif M., Ould-Saada F., Ouraou A., Ouyang Q., Owen M., Owen S., Øye O. K., Ozcan V. E., Ozturk N., Pacheco Pages A., Padilla Aranda C., Paganis E., Paige F., Pajchel K., Palestini S., Pallin D., Palma A., Palmer J. D., Pan Y. B., Panagiotopoulou E., Panes B., Panikashvili N., Panitkin S., Pantea D., Panuskova M., Paolone V., Papadelis A., Papadopoulou T., Paramonov A., Park W., Parker M. A., Parodi F., Parsons J. A., Parzefall U., Pasqualucci E., Passeri A., Pastore F., Pastore F., Pásztor G., Pataraia S., Patel N., Pater J. R., Patricelli S., Pauly T., Pecsy M., Pedraza Morales M. I., Peleganchuk S. V., Peng H., Pengo R., Penson A., Penwell J., Perantoni M., Perez K., Perez Cavalcanti T., Perez Codina E., Pérez García-Estañ M. T., Perez Reale V., Perini L., Pernegger H., Perrino R., Perrodo P., Persembe S., Peshekhonov V. D., Peters O., Petersen B. A., Petersen J., Petersen T. C., Petit E., Petridis A., Petridou C., Petrolo E., Petrucci F., Petschull D., Petteni M., Pezoa R., Phan A., Phillips A. W., Phillips P. W., Piacquadio G., Piccaro E., Piccinini M., Pickford A., Piec S. M., Piegaia R., Pilcher J. E., Pilkington A. D., Pina J., Pinamonti M., Pinder A., Pinfold J. L., Ping J., Pinto B., Pirotte O., Pizio C., Placakyte R., Plamondon M., Plano W. G., Pleier M. A., Pleskach A. V., Poblaguev A., Poddar S., Podlyski F., Poggioli L., Poghosyan T., Pohl M., Polci F., Polesello G., Policicchio A., Polini A., Poll J., Polychronakos V., Pomarede D. M., Pomeroy D., Pommès K., Pontecorvo L., Pope B. G., Popeneciu G. A., Popovic D. S., Poppleton A., Portell Bueso X., Porter R., Posch C., Pospelov G. E., Pospisil S., Potrap I. N., Potter C. J., Potter C. T., Poulard G., Poveda J., Prabhu R., Pralavorio P., Prasad S., Pravahan R., Prell S., Pretzl K., Pribyl L., Price D., Price L. E., Price M. J., Prichard P. M., Prieur D., Primavera M., Prokofiev K., Prokoshin F., Protopopescu S., Proudfoot J., Prudent X., Przysiezniak H., Psoroulas S., Ptacek E., Purdham J., Purohit M., Puzo P., Pylypchenko Y., Qian J., Qian Z., Qin Z., Quadt A., Quarrie D. R., Quayle W. B., Quinonez F., Raas M., Radescu V., Radics B., Rador T., Ragusa F., Rahal G., Rahimi A. M., Rahm D., Rajagopalan S., Rammensee M., Rammes M., Ramstedt M., Randrianarivony K., Ratoff P. N., Rauscher F., Rauter E., Raymond M., Read A. L., Rebuzzi D. M., Redelbach A., Redlinger G., Reece R., Reeves K., Reichold A., Reinherz-Aronis E., Reinsch A., Reisinger I., Reljic D., Rembser C., Ren Z. L., Renaud A., Renkel P., Rescigno M., Resconi S., Resende B., Reznicek P., Rezvani R., Richards A., Richter R., Richter-Was E., Ridel M., Rieke S., Rijpstra M., Rijssenbeek M., Rimoldi A., Rinaldi L., Rios R. R., Riu I., Rivoltella G., Rizatdinova F., Rizvi E., Robertson S. H., Robichaud-Veronneau A., Robinson D., Robinson J. E., Robinson M., Robson A., Rocha de Lima J. G., Roda C., Roda Dos Santos D., Rodier S., Rodriguez D., Rodriguez Garcia Y., Roe A., Roe S., Røhne O., Rojo V., Rolli S., Romaniouk A., Romanov V. M., Romeo G., Romero Maltrana D., Roos L., Ros E., Rosati S., Rosbach K., Rose M., Rosenbaum G. A., Rosenberg E. I., Rosendahl P. L., Rosselet L., Rossetti V., Rossi E., Rossi L. P., Rossi L., Rotaru M., Roth I., Rothberg J., Rousseau D., Royon C. R., Rozanov A., Rozen Y., Ruan X., Rubinskiy I., Ruckert B., Ruckstuhl N., Rud V. I., Rudolph C., Rudolph G., Rühr F., Ruggieri F., Ruiz-Martinez A., Rulikowska-Zarebska E., Rumiantsev V., Rumyantsev L., Runge K., Runolfsson O., Rurikova Z., Rusakovich N. A., Rust D. R., Rutherfoord J. P., Ruwiedel C., Ruzicka P., Ryabov Y. F., Ryadovikov V., Ryan P., Rybar M., Rybkin G., Ryder N. C., Rzaeva S., Saavedra A. F., Sadeh I., Sadrozinski H. F., Sadykov R., Safai Tehrani F., Sakamoto H., Salamanna G., Salamon A., Saleem M., Salihagic D., Salnikov A., Salt J., Salvachua Ferrando B. M., Salvatore D., Salvatore F., Salvucci A., Salzburger A., Sampsonidis D., Samset B. H., Sanchez A., Sandaker H., Sander H. G., Sanders M. P., Sandhoff M., Sandoval T., Sandstroem R., Sandvoss S., Sankey D. P., Sansoni A., Santamarina Rios C., Santoni C., Santonico R., Santos H., Saraiva J. G., Sarangi T., Sarkisyan-Grinbaum E., Sarri F., Sartisohn G., Sasaki O., Sasaki T., Sasao N., Satsounkevitch I., Sauvage G., Sauvan E., Sauvan J. B., Savard P., Savinov V., Savu D. O., Savva P., Sawyer L., Saxon D. H., Says L. P., Sbarra C., Sbrizzi A., Scallon O., Scannicchio D. A., Schaarschmidt J., Schacht P., Schäfer U., Schaepe S., Schaetzel S., Schaffer A. C., Schaile D., Schamberger R. D., Schamov A. G., Scharf V., Schegelsky V. A., Scheirich D., Scherzer M. I., Schiavi C., Schieck J., Schioppa M., Schlenker S., Schlereth J. L., Schmidt E., Schmieden K., Schmitt C., Schmitt S., Schmitz M., Schöning A., Schott M., Schouten D., Schovancova J., Schram M., Schroeder C., Schroer N., Schuh S., Schuler G., Schultes J., Schultz-Coulon H. C., Schulz H., Schumacher J. W., Schumacher M., Schumm B. A., Schune P., Schwanenberger C., Schwartzman A., Schwemling P., Schwienhorst R., Schwierz R., Schwindling J., Scott W. G., Searcy J., Sedykh E., Segura E., Seidel S. C., Seiden A., Seifert F., Seixas J. M., Sekhniaidze G., Seliverstov D. M., Sellden B., Sellers G., Seman M., Semprini-Cesari N., Serfon C., Serin L., Seuster R., Severini H., Sevior M. E., Sfyrla A., Shabalina E., Shamim M., Shan L. Y., Shank J. T., Shao Q. T., Shapiro M., Shatalov P. B., Shaver L., Shaw C., Shaw K., Sherman D., Sherwood P., Shibata A., Shichi H., Shimizu S., Shimojima M., Shin T., Shmeleva A., Shochet M. J., Short D., Shupe M. A., Sicho P., Sidoti A., Siebel A., Siegert F., Siegrist J., Sijacki D., Silbert O., Silva J., Silver Y., Silverstein D., Silverstein S. B., Simak V., Simard O., Simic L., Simion S., Simmons B., Simonyan M., Sinervo P., Sinev N. B., Sipica V., Siragusa G., Sisakyan A. N., Sivoklokov S., Sjölin J., Sjursen T. B., Skinnari L. A., Skovpen K., Skubic P., Skvorodnev N., Slater M., Slavicek T., Sliwa K., Sloan T. J., Sloper J., Smakhtin V., Smirnov S., Smirnova L. N., Smirnova O., Smith B. C., Smith D., Smith K. M., Smizanska M., Smolek K., Snesarev A. A., Snow S. W., Snow J., Snuverink J., Snyder S., Soares M., Sobie R., Sodomka J., Soffer A., Solans C. A., Solar M., Solc J., Soldatov E., Soldevila U., Solfaroli Camillocci E., Solodkov A. A., Solovyanov O. V., Sondericker J., Soni N., Sopko V., Sopko B., Sorbi M., Sosebee M., Soukharev A., Spagnolo S., Spanò F., Spighi R., Spigo G., Spila F., Spiriti E., Spiwoks R., Spousta M., Spreitzer T., Spurlock B., St. Denis R. D., Stahl T., Stahlman J., Stamen R., Stanecka E., Stanek R. W., Stanescu C., Stapnes S., Starchenko E. A., Stark J., Staroba P., Starovoitov P., Staude A., Stavina P., Stavropoulos G., Steele G., Steinbach P., Steinberg P., Stekl I., Stelzer B., Stelzer H. J., Stelzer-Chilton O., Stenzel H., Stevenson K., Stewart G. A., Stillings J. A., Stockmanns T., Stockton M. C., Stoerig K., Stoicea G., Stonjek S., Strachota P., Stradling A. R., Straessner A., Strandberg J., Strandberg S., Strandlie A., Strang M., Strauss E., Strauss M., Strizenec P., Ströhmer R., Strom D. M., Strong J. A., Stroynowski R., Strube J., Stugu B., Stumer I., Stupak J., Sturm P., Soh D. A., Su D., Subramania H. S., Succurro A., Sugaya Y., Sugimoto T., Suhr C., Suita K., Suk M., Sulin V. V., Sultansoy S., Sumida T., Sun X., Sundermann J. E., Suruliz K., Sushkov S., Susinno G., Sutton M. R., Suzuki Y., Svatos M., Sviridov Y., Swedish S., Sykora I., Sykora T., Szeless B., Sánchez J., Ta D., Tackmann K., Taffard A., Tafirout R., Taga A., Taiblum N., Takahashi Y., Takai H., Takashima R., Takeda H., Takeshita T., Talby M., Talyshev A., Tamsett M. C., Tanaka J., Tanaka R., Tanaka S., Tanaka S., Tanaka Y., Tani K., Tannoury N., Tappern G. P., Tapprogge S., Tardif D., Tarem S., Tarrade F., Tartarelli G. F., Tas P., Tasevsky M., Tassi E., Tatarkhanov M., Taylor C., Taylor F. E., Taylor G. N., Taylor W., Teixeira Dias Castanheira M., Teixeira-Dias P., Temming K. K., Ten Kate H., Teng P. K., Terada S., Terashi K., Terron J., Terwort M., Testa M., Teuscher R. J., Thadome J., Therhaag J., Theveneaux-Pelzer T., Thioye M., Thoma S., Thomas J. P., Thompson E. N., Thompson P. D., Thompson P. D., Thompson A. S., Thomson E., Thomson M., Thun R. P., Tic T., Tikhomirov V. O., Tikhonov Y. A., Timmermans C. J., Tipton P., Tique Aires Viegas F. J., Tisserant S., Tobias J., Toczek B., Todorov T., Todorova-Nova S., Toggerson B., Tojo J., Tokár S., Tokunaga K., Tokushuku K., Tollefson K., Tomoto M., Tompkins L., Toms K., Tong G., Tonoyan A., Topfel C., Topilin N. D., Torchiani I., Torrence E., Torró Pastor E., Toth J., Touchard F., Tovey D. R., Traynor D., Trboush S., Trefzger T., Tremblet L., Tricoli A., Trigger I. M., Trincaz-Duvoid S., Trinh T. N., Tripiana M. F., Trischuk W., Trivedi A., Trocmé B., Troncon C., Trottier-McDonald M., Trzupek A., Tsarouchas C., Tseng J. C., Tsiakiris M., Tsiareshka P. V., Tsionou D., Tsipolitis G., Tsiskaridze V., Tskhadadze E. G., Tsukerman I. I., Tsulaia V., Tsung J. W., Tsuno S., Tsybychev D., Tua A., Tuggle J. M., Turala M., Turecek D., Turk Cakir I., Turlay E., Turra R., Tuts P. M., Tykhonov A., Tylmad M., Tyndel M., Tyrvainen H., Tzanakos G., Uchida K., Ueda I., Ueno R., Ugland M., Uhlenbrock M., Uhrmacher M., Ukegawa F., Unal G., Underwood D. G., Undrus A., Unel G., Unno Y., Urbaniec D., Urkovsky E., Urrejola P., Usai G., Uslenghi M., Vacavant L., Vacek V., Vachon B., Vahsen S., Valenta J., Valente P., Valentinetti S., Valkar S., Valladolid Gallego E., Vallecorsa S., Valls Ferrer J. A., van der Graaf H., van der Kraaij E., Van Der Leeuw R., van der Poel E., van der Ster D., Van Eijk B., van Eldik N., van Gemmeren P., van Kesteren Z., van Vulpen I., Vandelli W., Vandoni G., Vaniachine A., Vankov P., Vannucci F., Varela Rodriguez F., Vari R., Varnes E. W., Varouchas D., Vartapetian A., Varvell K. E., Vassilakopoulos V. I., Vazeille F., Vegni G., Veillet J. J., Vellidis C., Veloso F., Veness R., Veneziano S., Ventura A., Ventura D., Venturi M., Venturi N., Vercesi V., Verducci M., Verkerke W., Vermeulen J. C., Vest A., Vetterli M. C., Vichou I., Vickey T., Viehhauser G. H., Viel S., Villa M., Villaplana Perez M., Vilucchi E., Vincter M. G., Vinek E., Vinogradov V. B., Virchaux M., Virzi J., Vitells O., Viti M., Vivarelli I., Vives Vaque F., Vlachos S., Vlasak M., Vlasov N., Vogel A., Vokac P., Volpi G., Volpi M., Volpini G., von der Schmitt H., von Loeben J., von Radziewski H., von Toerne E., Vorobel V., Vorobiev A. P., Vorwerk V., Vos M., Voss R., Voss T. T., Vossebeld J. H., Vranjes N., Vranjes Milosavljevic M., Vrba V., Vreeswijk M., Vu Anh T., Vuillermet R., Vukotic I., Wagner W., Wagner P., Wahlen H., Wakabayashi J., Walbersloh J., Walch S., Walder J., Walker R., Walkowiak W., Wall R., Waller P., Wang C., Wang H., Wang H., Wang J., Wang J., Wang J. C., Wang R., Wang S. M., Warburton A., Ward C. P., Warsinsky M., Watkins P. M., Watson A. T., Watson M. F., Watts G., Watts S., Waugh A. T., Waugh B. M., Weber J., Weber M., Weber M. S., Weber P., Weidberg A. R., Weigell P., Weingarten J., Weiser C., Wellenstein H., Wells P. S., Wen M., Wenaus T., Wendler S., Weng Z., Wengler T., Wenig S., Wermes N., Werner M., Werner P., Werth M., Wessels M., Weydert C., Whalen K., Wheeler-Ellis S. J., Whitaker S. P., White A., White M. J., White S., Whitehead S. R., Whiteson D., Whittington D., Wicek F., Wicke D., Wickens F. J., Wiedenmann W., Wielers M., Wienemann P., Wiglesworth C., Wiik L. A., Wijeratne P. A., Wildauer A., Wildt M. A., Wilhelm I., Wilkens H. G., Will J. Z., Williams E., Williams H. H., Willis W., Willocq S., Wilson J. A., Wilson M. G., Wilson A., Wingerter-Seez I., Winkelmann S., Winklmeier F., Wittgen M., Wolter M. W., Wolters H., Wooden G., Wosiek B. K., Wotschack J., Woudstra M. J., Wraight K., Wright C., Wrona B., Wu S. L., Wu X., Wu Y., Wulf E., Wunstorf R., Wynne B. M., Xaplanteris L., Xella S., Xie S., Xie Y., Xu C., Xu D., Xu G., Yabsley B., Yamada M., Yamamoto A., Yamamoto K., Yamamoto S., Yamamura T., Yamaoka J., Yamazaki T., Yamazaki Y., Yan Z., Yang H., Yang U. K., Yang Y., Yang Y., Yang Z., Yanush S., Yao W. M., Yao Y., Yasu Y., Ybeles Smit G. V., Ye J., Ye S., Yilmaz M., Yoosoofmiya R., Yorita K., Yoshida R., Young C., Youssef S., Yu D., Yu J., Yu J., Yuan L., Yurkewicz A., Zaets V. G., Zaidan R., Zaitsev A. M., Zajacova Z., Zalite Y., Zanello L., Zarzhitsky P., Zaytsev A., Zeitnitz C., Zeller M., Zemla A., Zendler C., Zenin A. V., Zenin O., Ženiš T., Zenonos Z., Zenz S., Zerwas D., Zevi della Porta G., Zhan Z., Zhang D., Zhang H., Zhang J., Zhang X., Zhang Z., Zhao L., Zhao T., Zhao Z., Zhemchugov A., Zheng S., Zhong J., Zhou B., Zhou N., Zhou Y., Zhu C. G., Zhu H., Zhu J., Zhu Y., Zhuang X., Zhuravlov V., Zieminska D., Zimmermann R., Zimmermann S., Zimmermann S., Ziolkowski M., Zitoun R., Živković L., Zmouchko V. V., Zobernig G., Zoccoli A., Zolnierowski Y., Zsenei A., zur Nedden M., Zutshi V. & Zwalinski L.
(2011)
Physics Letters B.
703,
4,
p. 428-446
A search for long-lived charged particles reaching the muon spectrometer is performed using a data sample of 37 pb-1 from pp collisions at √s = 7 TeV collected by the ATLAS detector at the LHC in 2010. No excess is observed above the estimated background. Stable τ over bar sleptons are excluded at 95% CL up to a mass of 136 GeV, in GMSB models with N-5 = 3 ,mmessenger = 250 TeV, sign(μ) = 1 and tan β = 5. Electroweak production of sleptons is excluded up to a mass of 110 GeV. Gluino R-hadrons in a generic interaction model are excluded up to masses of 530 GeV to 544 GeV depending on the fraction of R-hadrons produced as (g) over bar -balls.
Abbiendi G., Ainsley C., Akesson P. F., Alexander G., Anagnostou G., Anderson K. J., Asai S., Axen D., Bailey I., Barberio E., Barillari T., Barlow R. J., Batley R. J., Bechtle P., Behnke T., Bell K. W., Bell P. J., Bella G., Bellerive A., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2011)
European Physical Journal C.
71,
9,
p. 1-21
1733.
Hadronic event shape distributions from e+e- annihilation measured by the OPAL experiment at centre-of-mass energies between 91 GeV and 209 GeV are used to determine the strong coupling αS. The results are based on QCD predictions complete to the next-to-next-to-leading order (NNLO), and on NNLO calculations matched to the resummed next-to-leading-log-approximation terms (NNLO + NLLA). The combined NNLO result from all variables and centre-of-mass energies is [Equation not available: see fulltext.] while the combined NNLO + NLLA result is [Equation not available: see fulltext.] The completeness of the NNLO and NNLO + NLLA results with respect to missing higher order contributions, studied by varying the renormalization scale, is improved compared to previous results based on NLO or NLO + NLLA predictions only. The observed energy dependence of αS agrees with the QCD prediction of asymptotic freedom and excludes the absence of running.
Cowan G., Cranmer K., Gross E. & Vitells O.
(2011)
European Physical Journal C.
71,
2,
1554.
We describe likelihood-based statistical tests for use in high energy physics for the discovery of new phenomena and for construction of confidence intervals on model parameters. We focus on the properties of the test procedures that allow one to account for systematic uncertainties. Explicit formulae for the asymptotic distributions of test statistics are derived using results ofWilks andWald.We motivate and justify the use of a representative data set, called the \u201cAsimov data set\u201d, which provides a simple method to obtain the median experimental sensitivity of a search or measurement as well as fluctuations about this expectation.
Gross E. & Vitells O.
(2010)
European Physical Journal C.
70,
1,
p. 525-530
When searching for a new resonance somewhere in a possible mass range, the significance of observing a local excess of events must take into account the probability of observing such an excess anywhere in the range. This is the so called "look elsewhere effect". The effect can be quantified in terms of a trial factor, which is the ratio between the probability of observing the excess at some fixed mass point, to the probability of observing it anywhere in the range. We propose a simple and fast procedure for estimating the trial factor, based on earlier results by Davies. We show that asymptotically, the trial factor grows linearly with the (fixed mass) significance.
Gross E., Grossman D., Nir Y. & Vitells O.
(2010)
Physical Review D.
81,
5,
055013.
Models of minimal lepton flavor violation where the seesaw scale is higher than the relevant flavor scale predict that all lepton flavor violation is proportional to the charged lepton Yukawa matrix. If extra vectorlike leptons are within the reach of the LHC, it will be possible to test the resulting predictions in ATLAS/CMS.
Gross E. & Vitells O.
(2010)
Physical Review D.
81,
5,
055010.
Charged Higgs boson may be produced at hadron colliders via the decay of top quarks. At the LHC, the large production cross section of top quarks pairs will make it one of the earliest channels allowing to search for physics beyond the standard model. Assuming the decay H+→τ+ν, previous searches have so far considered only hadronic τ decays. Here, we show that by using appropriate kinematical variables (transverse mass observables), leptonic τ decays can be used as well, for both observing and possibly measuring the mass of the charged Higgs boson. This can increase the overall experimental sensitivity to charged Higgs bosons at hadron colliders.
Abbiendi G., Ainsley C., Akesson P. F., Alexander G., Anagnostou G., Anderson K. J., Asai S., Axen D., Bailey I., Barberio E., Barillari T., Barlow R. J., Batley R. J., Bechtle P., Behnke T., Bell K. W., Bell P. J., Bella G., Bellerive A., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2010)
Physics Letters B.
682,
4-5,
p. 381-390
A search is performed for Higgs bosons decaying into invisible final states, produced in association with a Z0 boson in e+ e- collisions at energies between 183 and 209 GeV. The search is based on data samples collected by the OPAL detector at LEP corresponding to an integrated luminosity of about 660 pb-1. The analysis aims to select events containing the hadronic decay products of the Z0 boson and large missing momentum, as expected from Higgs boson decay into a pair of stable weakly interacting neutral particles, such as the lightest neutralino in the Minimal Supersymmetric Standard Model. The same analysis is applied to a search for nearly invisible Higgs boson cascade decays into stable weakly interacting neutral particles. No excess over the expected background from Standard Model processes is observed. Limits on the production of invisibly decaying Higgs bosons produced in association with a Z0 boson are derived. Assuming a branching ratio BR (h0 → invisible) = 1, a lower limit of 108.2 GeV is placed on the Higgs boson mass at the 95% confidence level. Limits on the production of nearly invisibly decaying Higgs bosons are also obtained.
Gross E. & Vitells O.
(2010)
Proceedings of Science.
93,
007.
Statistical methods used for discovery and exclusion of signal at the LHC and the TEVATRON are described. An emphasis is given to the Look Elsewhere Effect, the CLs controversy and the equivalence between the Bayesian and frequentist Profile Likelihood when using flat priors. For the Look Elsewhere Effect, formulas are derived that allow the estimation of the effect from the simple fixed mass result without the need to perform complicated Monte Carlo simuations.
This contribution presents a novel approach to estimate the Standard Model backgrounds based on modifying Monte Carlo predictions within their systematic uncertainties. The improved background model is obtained by altering the original predictions with successively more complex correction functions in signal-free control selections. Statistical tests indicate when sufficient compatibility with data is reached. In this way, systematic effects are absorbed into the new background model. The same correction is then applied on the Monte Carlo prediction in the signal region. Comparing this method to other background estimation techniques shows improvements with respect to statistical and systematic uncertainties. The proposed method can also be applied in other fields beyond high energy physics.
Abbiendi G., Ainsley C., Akesson P. F., Alexander G., Anagnostou G., Anderson K. J., Asai S., Axen D., Bailey I., Barberio E., Barillari T., Barlow R. J., Batley R. J., Bechtle P., Behnke T., Bell K. W., Bell P. J., Bella G., Bellerive A., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2009)
European Physical Journal C.
64,
4,
p. 609-625
Data collected around √s=91 GeV by the OPAL experiment at the LEP e+e- collider are used to study the mechanism of baryon formation. As the signature, the fraction of ∑- hyperons whose baryon number is compensated by the production of a ∑̄- Λ̄ Ξ ̄- antihyperon is determined. The method relies entirely on quantum number correlations of the baryons, and not rapidity correlations, making it more model independent than previous studies. Within the context of the JETSET implementation of the string hadronization model, the diquark baryon production model without the popcorn mechanism is strongly disfavored with a significance of 3.8 standard deviations including systematic uncertainties. It is shown that previous studies of the popcorn mechanism with Λ Λ ̄ and p πp̄ correlations are not conclusive, if parameter uncertainties are considered.
Gross E. & Živković L.
(2009)
European Physical Journal C.
59,
3,
p. 731-754
One of the main goals of the ATLAS experiment is to measure various Higgs boson couplings as accurately as possible. Such a measurement is mandatory for a full understanding of the Higgs sector. One of the most challenging measurements of the Higgs boson properties is the determination of the Yukawa coupling to the top quark. To complement the tt̄H→ tt̄bb̄ channel, which is the most significant in the low Higgs mass region (m H ∼ 120 GeV), we introduce a feasibility study of the tt̄H channel with the Higgs decaying to a pair of τ leptons. The signal events were reconstructed using the full and the fast simulation of the ATLAS detector. It is shown that both the distributions and the number of expected events after the same cuts agree, and that we can use the fast simulation to complete the analysis. We obtain a significance of 1.6σ for the low luminosity condition (30 fb-1) and m H =120 GeV, and 2.0σ for the high luminosity condition (300 fb-1) and m H =120 GeV. The observability of Higgs boson in this channel is demonstrated to be very marginal, even in the absence of taking into account tt̄ +jets.
Gross E. & Vitells O.
(2009)
SUSY09 - The 17th International Conference on Supersymmetry and the Unification of Fundamental Interactions
.
p. 349-353
Light charged Higgs bosons (mH+ < mtop), if exist, are expected to be copiously produced at the LHC via top quark decays t→H+b. The dominant decay mode in this mass range is to a τ-lepton and a neutrino. We study the semi-leptonic and di-leptonic channels in which the τ decays leptonically (i.e. to an electron or a muon). The presence of an isolated lepton offers a cleaner experimental signature compared to hadronic τ decays, however reconstruction of the event is more challenging due to the presence of multiple neutrinos in the final state. We define a new transverse mass for the charged Higgs in these channels, which can be used to discriminate between the signal and the main background on a statistical basis.
Caron S., Cowan G., Gross E., Horner S. & Sundermann J. E.
(2009)
Journal of Instrumentation.
4,
10,
P10009.
This paper presents a novel approach to estimate the Standard Model backgrounds based on modifying Monte Carlo predictions within their systematic uncertainties. The improved background model is obtained by altering the original predictions with successively more complex correction functions in signal-free control selections. Statistical tests indicate when sufficient compatibility with data is reached. In this way, systematic effects are absorbed into the new background model. The same correction is then applied on the Monte Carlo prediction in the signal region. Comparing this method to other background estimation techniques shows improvements with respect to statistical and systematic uncertainties. The proposed method can also be applied in other fields beyond high energy physics.
Vitells O. & Gross E.
(2008)
Proceedings of Science.
Light charged Higgs bosons ( mh+ < m top), if exist, are expected to be produced at the LHC dominantly via top quark decays, t →H+b . The dominant decay mode of the charged Higgs boson in this mass range is to a τ-lepton and a neutrino. We study the channel in which the τdecays leptonically (i.e. to an electron or a muon). The presence of an isolated lepton offers a cleaner experimental signature compared to hadronic τdecays, however reconstruction of the event is more challenging due to the presence of three neutrinos in the final state. We define a new transverse mass for the charged Higgs in this channel, which can be used to discriminate between the signal and the main background on a statistical basis.
Abbiendi G., Ainsley C., Akesson P. F., Alexander G., Anagnostou G., Anderson K. J., Asai S., Axen D., Bailey I., Barberio E., Barillari T., Barlow R. J., Batley R. J., Bechtle P., Behnke T., Bell K. W., Bell P. J., Bella G., Bellerive A., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2008)
Physics Letters B.
658,
5,
p. 185-192
Inclusive jet production (e+ e- → e+ e- + jet + X) is studied in collisions of quasi-real photons radiated by the LEP beams at e+ e- centre-of-mass energies sqrt(see) from 189 to 209 GeV. Jets are reconstructed using the k⊥ jet algorithm. The inclusive differential cross-section is measured as a function of the jet transverse momentum, pTjet, in the range 5 < pTjet < 40 GeV for pseudo-rapidities, ηjet, in the range - 1.5 < ηjet < 1.5. The results are compared to predictions of perturbative QCD in next-to-leading order in the strong coupling constant.
Abbiendi G., Ainsley C., Akesson P. F., Alexander G., Anagnostou G., Anderson K. J., Asai S., Axen D., Bailey I., Barberio E., Barillari T., Barlow R. J., Batley R. J., Bechtle P., Behnke T., Bell K. W., Bell P. J., Bella G., Bellerive A., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2008)
European Physical Journal C.
53,
1,
p. 21-39
21.
Hadronic final states with a hard isolated photon are studied using data taken at centre-of-mass energies around the mass of the Z boson with the OPAL detector at LEP. The strong coupling αs is extracted by comparing data and QCD predictions for event shape observables at average reduced centre-of-mass energies ranging from 24 GeV to 78 GeV, and the energy dependence of αs is studied. Our results are consistent with the running of αs as predicted by QCD and show that within the uncertainties of our analysis event shapes in hadronic Z decays with hard and isolated photon radiation can be described by QCD at reduced centre-of-mass energies. Combining all values from different event shape observables and energies gives αs(MZ)=0.1182±0.0015(stat.) ±0.0101(syst.).
LHC statistics for pedestrians
Gross E.
(2008)
p. 205-212
A pedestrians guide aimed at the LHC laymen statisticians is presented. It is not meant to replace any text book but to help the confused physicist to understand the jargon and methods used by HEP Phystatisticians.
Abbiendi G., Ainsley C., Akesson P. F., Alexander G., Anagnostou G., Anderson K. J., Asai S., Axen D., Bailey I., Barberio E., Barillari T., Barlow R. J., Batley R. J., Bechtle P., Behnke T., Bell K. W., Bell P. J., Bella G., Bellerive A., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2007)
Physics Letters B.
651,
2-3,
p. 92-101
The inclusive production of charged hadrons in the collisions of quasi-real photons (e+ e- → e+ e- + X) has been measured using the OPAL detector at LEP. The data were taken at e+ e- centre-of-mass energies from 183 to 209 GeV. The differential cross-sections as a function of the transverse momentum and the pseudorapidity of the hadrons are compared to theoretical calculations of up to next-to-leading order (NLO) in the strong coupling constant αs. The data are also compared to a measurement by the L3 Collaboration, in which a large deviation from the NLO predictions is observed.
Abbiendi G., Ainsley C., Akesson P. F., Alexander G., Anagnostou G., Anderson K. J., Asai S., Axen D., Bailey I., Barberio E., Barillari T., Barlow R. J., Batley R. J., Bechtle P., Behnke T., Bell K. W., Bell P. J., Bella G., Bellerive A., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2006)
European Physical Journal C.
47,
2,
p. 295-307
295.
Data from e+e- annihilation into hadrons at centre-of-mass energies between 91 GeV and 209 GeV collected with the OPAL detector at LEP, are used to study the four-jet rate as a function of the Durham algorithm resolution parameter ycut. The four-jet rate is compared to next-to-leading order calculations that include the resummation of large logarithms. The strong coupling measured from the four-jet rate is equation presented, in agreement with the world average. Next-to-leading order fits to the D-parameter and thrust minor event-shape observables are also performed for the first time. We find consistent results, but with significantly larger theoretical uncertainties.
Abbiendi G., Ainsley C., Akesson P. F., Alexander G., Anagnostou G., Anderson K. J., Asai S., Axen D., Bailey I., Barberio E., Barillari T., Barlow R. J., Batley R. J., Bechtle P., Behnke T., Bell K. W., Bell P. J., Bella G., Bellerive A., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2006)
Physics Letters B.
638,
1,
p. 30-38
QCD coherence effects are studied based on measurements of correlations of particles with either restricted transverse momenta, pT < pTcut, where pT is defined with respect to the thrust axis, or restricted absolute momenta, p ≡ | p | < pcut, using about four million hadronic Z decays recorded at LEP with the OPAL detector. The correlations are analyzed in terms of normalized factorial and cumulant moments. The analysis is inspired by analytical QCD calculations which, in conjunction with Local Parton-Hadron Duality (LPHD), predict that, due to colour coherence, the multiplicity distribution of particles with restricted transverse momenta should become Poissonian as pTcut decreases. The expected correlation pattern is indeed observed down to pTcut ≈ 1 GeV but not at lower transverse momenta. Furthermore, for pcut → 0 GeV a strong rise is observed in the data, in disagreement with theoretical expectation. The Monte Carlo models reproduce well the measurements at large pTcut and pcut but underestimate their magnitudes at the lowest momenta. The e+ e- data are also compared to the measurements in deep-inelastic e+ p collisions at HERA. It is shown that for soft particles, the often assumed equivalence of a single hemisphere in e+ e- annihilation with the current region in the Breit frame of a deep-inelastic collision may be misleading. Our study indicates difficulties with the LPHD hypothesis when applied to many-particle inclusive observables of soft hadrons.
Abbiendi G., Ainsley C., Akesson P. F., Alexander G., Anagnostou G., Anderson K. J., Arcelli S., Asai S., Axen D., Bailey I., Barberio E., Barillari T., Barlow R. J., Batley R. J., Bechtle P., Behnke T., Bell K. W., Bell P. J., Bella G., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2006)
European Physical Journal C.
46,
2,
p. 307-341
Searches were performed for topologies predicted by gauge-mediated supersymmetry breaking models (GMSB). All possible lifetimes of the next-to-lightest SUSY particle (NLSP), either the lightest neutralino or slepton, decaying into the lightest SUSY particle, the gravitino, were considered. No evidence for GMSB signatures was found in the OPAL data sample collected at centre-of-mass energies up to →s = 209 GeV at LEP. Limits on the product of the production cross-sections and branching fractions are presented for all search topologies. To test the impact of the searches, a complete scan over the parameters of the minimal model of GMSB was performed. NLSP masses below 53.5 GeV/c2 in the neutralino NLSP scenario, below 87.4 GeV/c2 in the stau NLSP scenario and below 91.9 GeV/c 2 in the slepton co-NLSP scenario are excluded at 95% confidence level for all NLSP lifetimes. The scan determines constraints on the universal SUSY mass scale A from the direct SUSY particle searches of A > 40, 27, 21, 17, 15 TeV/c2 for messenger indices N = 1, 2, 3, 4, 5 for all NLSP lifetimes.
Abbiendi G., Ainsley C., Akesson P. F., Alexander G., Anagnostou G., Anderson K. J., Asai S., Axen D., Bailey I., Barberio E., Barillari T., Barlow R. J., Batley R. J., Bechtle P., Behnke T., Bell K. W., Bell P. J., Bella G., Bellerive A., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2006)
European Physical Journal C.
45,
3,
p. 547-568
547.
Hadronic events produced in e+e- collisions by the LEP collider and recorded by the OPAL detector were used to form distributions based on the number of reconstructed jets. The data were collected between 1995 and 2000 and correspond to energies of 91 GeV, 130-136 GeV and 161-209 GeV. The jet rates were determined using four different jet-finding algorithms (Cone, JADE, Durham and Cambridge). The differential two-jet rate and the average jet rate with the Durham and Cambridge algorithms were used to measure αs in the LEP energy range by fitting an expression in which script O sign(αs2) calculations were matched to a NLLA prediction and fitted to the data. Combining the measurements at different centre-of-mass energies, the value of αs(MZ) was determined to be αs(MZ) = 0.1177 ± 0.0006 (stat.) ± 0.0012 (expt.) ± 0.0010 (had.) ± 0.0032 (theo.).
Abbiendi G., Ainsley C., Akesson P. F., Alexander G., Anagnostou G., Anderson K. J., Asai S., Axen D., Bailey I., Barberio E., Barillari T., Barlow R. J., Batley R. J., Bechtle P., Behnke T., Bell P. J., Bella G., Bellerive A., Benelli G., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2006)
European Physical Journal C.
45,
2,
p. 291-305
291.
The effects of the final state interaction phenomenon known as colour reconnection are investigated at centre-of-mass energies in the range √s ≃ 189-209 GeV using the OPAL detector at LEP. Colour reconnection is expected to affect observables based on charged particles in hadronic decays of W+W-. Measurements of inclusive charged particle multiplicities, and of their angular distribution with respect to the four jet axes of the events, are used to test models of colour reconnection. The data are found to exclude extreme scenarios of the Sjöstrand-Khoze Type I (SK-I) model and are compatible with other models, both with and without colour reconnection effects. In the context of the SK-I model, the best agreement with data is obtained for a reconnection probability of 37%. Assuming no colour reconnection, the charged particle multiplicity in hadronically decaying W bosons is measured to be 〈nchqq〉 = 19.38±0.05(stat.) ±0.08(syst.).
Abbiendi G., Ainsley C., Akesson P. F., Alexander G., Anagnostou G., Anderson K. J., Asai S., Axen D., Bailey I., Barberio E., Barillari T., Barlow R. J., Batley R. J., Bechtle P., Behnke T., Bell K. W., Bell P. J., Bella G., Bellerive A., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2006)
European Physical Journal C.
45,
2,
p. 307-335
The mass and width of the W boson are measured using e+e - → W+W- events from the data sample collected by the OPAL experiment at LEP at centre-of-mass energies between 170 GeV and 209 GeV. The mass (mW) and width (ΓW) are determined using direct reconstruction of the kinematics of W+W - → qq̄ℓv and W+W- → qq̄qq̄ events. When combined with previous OPAL measurements using W+W- → ℓvℓv events and the dependence on mW of the WW production cross-section at threshold, the results are determined to be mW = 80.415 ± 0.042 ± 0.030 ± 0.009 GeV ΓW = 1.996 ± 0.096 ± 0.102 ± 0.003 GeV where the first error is statistical, the second systematic and the third due to uncertainties in the value of the LEP beam energy. By measuring mW in the qq̄qq̄ channel using several different determinations of the direction of jets with differing sensitivities to soft particles, a limit is also obtained on possible final-state interactions due to colour reconnection effects in W+W- → qq̄qq̄ events. The consistency of the results for the W mass and width with those inferred from other electroweak parameters provides an important test of the Standard Model of electroweak interactions.
Gross E., Sevier C., Heldman N., Vitu E., Bentzur M., Kaiser C., Thorpe C. & Fass D.
(2006)
Proceedings of the National Academy of Sciences of the United States of America.
103,
2,
p. 299-304
Ero1p is a key enzyme in the disulfide bond formation pathway in eukaryotic cells in both aerobic and anaerobic environments. It was previously demonstrated that Ero1p can transfer electrons from thiol substrates to molecular oxygen. However, the fate of electrons under anaerobic conditions and the final fate of electrons under aerobic conditions remained obscure. To address these fundamental issues in the Ero1p mechanism, we studied the transfer of electrons from recombinant yeast Ero1p to various electron acceptors. Under aerobic conditions, reduction of molecular oxygen by Ero1p yielded stoichiometric hydrogen peroxide. Remarkably, we found that reduced Ero1p can transfer electrons to a variety of small and macromolecular electron acceptors in addition to molecular oxygen. In particular, Ero1p can catalyze reduction of exogenous FAD in solution. Free FAD is not required for the catalysis of dithiol oxidation by Ero1p, but it is sufficient to drive disulfide bond formation under anaerobic conditions. These findings provide insight into mechanisms for regenerating oxidized Ero1p and maintaining disulfide bond formation under anaerobic conditions in the endoplasmic reticulum.
Abbiendi G., Ainsley C., Akesson P. F., Alexander G., Anagnostou G., Anderson K. J., Asai S., Axen D., Bailey I., Barberio E., Barillari T., Barlow R. J., Batley R. J., Bechtle P., Behnke T., Bell K. W., Bell P. J., Bella G., Bellerive A., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2006)
European Physical Journal C.
45,
1,
p. 1-21
Using the OPAL detector at LEP, the running of the effective QED coupling α(t) is measured for space-like momentum transfer from the angular distribution of small-angle Bhabha scattering. In an almost ideal QED framework, with very favourable experimental conditions, we obtain: Δα(-6.07 GeV2) - Δα(-1.81 GeV2) = (440 ± 58 ± 43 ± 30) × 10-5, where the first error is statistical, the second is the experimental systematic and the third is the theoretical uncertainty. This agrees with current evaluations of α(t). The null hypothesis that α remains constant within the above interval of -t is excluded with a significance above 5σ. Similarly, our results are inconsistent at the level of 3 σ with the hypothesis that only leptonic loops contribute to the running. This is currently the most significant direct measurement where the running α(t) is probed differentially within the measured t range.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Amaral P., Anagnostou G., Anderson K., Asai S., Axen D., Bailey I., Barberio E., Barillari T., Barlow R., Batley R., Bechtle P., Behnke T., Bell K., Bell P., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2005)
European Physical Journal C.
40,
3,
p. 317-332
Upper limits on the cross-section of the pair-production process e +e- →h0 A0, assuming 100 % branching fraction to hadrons, are derived from a new search for the →h0 A0→ hadrons final state, independently of the hadronic flavour of the decay products. This study, combined with previously published searches for the neutral Higgs bosons h0 and A 0, is used to constrain the Type II Two Higgs Doublet Model (2HDM(II)) with no CP violation in the Higgs sector and no additional non-Standard Model particles besides the five Higgs bosons. The analysis combines LEP1 and LEP2 data collected with the OPAL detector up to the highest available centre-of-mass energies. The searches are sensitive to the h 0, A0→qq̄, gg, τ+ τ- h0A0A0 decay modes of the Higgs bosons. A benchmark scan of the 2HDM(II) parameter space is performed. Large regions of the 2HDM(II) parameter space explored are excluded at the 95% CL in the mh, mA, (mh, \tanβ planes, using both direct neutral Higgs boson searches and indirect limits derived from Standard Model high precision measurements. The region 1 ≲ mh ≲ 55 GeV and 3 ≲ mA ≲ 63 GeV is excluded at 95 % CL, independently of mh, mA, tanβ and for selected values of α which are representative of a complete α -scan.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Amaral P., Anagnostou G., Anderson K., Asai S., Axen D., Bailey I., Barberio E., Barillari T., Barlow R., Batley R., Bechtle P., Behnke T., Bell K., Bell P., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2005)
European Physical Journal C.
40,
3,
p. 287-316
We have studied hadronic events from e + e- annihilation data at centre-of-mass energies from 91 to 209 GeV. We present distributions of event shape observables and their moments at each energy and compare with QCD Monte Carlo models. From the event shape distributions we extract the strong coupling αs and test its evolution with energy scale. The results are consistent with the running of αs expected from QCD. Combining all data, the value of αs(M z is determined to be αs(Mz = 0.1191 ± 0.0005 (stat.) ± 0.0010(expt.) ± 0.0011(hadr.) ± 0.0044(theo.). The energy evolution of the moments is also used to determine a value of αs with slightly larger errors: α s(Mz =0.1223 ± 0.0005(stat.)± 0.0014 (expt.)± 0.0016 (hadr.){+0.0054}0.0036.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Amaral P., Anagnostou G., Anderson K., Asai S., Axen D., Bailey I., Barberio E., Barillari T., Barlow R., Batley R., Bechtle P., Behnke T., Bell K., Bell P., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2005)
Physics Letters B.
609,
1-2,
p. 20-34
A new scalar resonance, called the radion, with couplings to fermions and bosons similar to those of the Higgs boson, is predicted in the framework of Randall-Sundrum models, proposed solutions to the hierarchy problem with one extra dimension. An important distinction between the radion and the Higgs boson is that the radion would couple directly to gluon pairs, and in particular its decay products would include a significant fraction of gluon jets. The radion has the same quantum numbers as the Standard Model (SM) Higgs boson, and therefore they can mix, with the resulting mass eigenstates having properties different from those of the SM Higgs boson. Existing searches for the Higgs bosons are sensitive to the possible production and decay of radions and Higgs bosons in these models. For the first time, searches for the SM Higgs boson and flavour-independent and decay-mode independent searches for a neutral Higgs boson are used in combination to explore the parameter space of the Randall-Sundrum model. In the dataset recorded by the OPAL experiment at LEP, no evidence for radion or Higgs particle production was observed in any of those searches at centre-of-mass energies up to 209 GeV. The results are used to set limits on the radion and Higgs boson masses. For all parameters of the Randall-Sundrum model, the data exclude masses below 58 GeV for the mass eigenstate which becomes the Higgs boson in the no-mixing limit.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Amaral P., Anagnostou G., Anderson K., Asai S., Axen D., Bailey I., Barberio E., Barillari T., Barlow R., Batley R., Bechtle P., Behnke T., Bell K., Bell P., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2005)
Physics Letters B.
609,
3-4,
p. 212-225
Measurements of Rb, the ratio of the bb̄ cross-section to the qq̄ cross-section in e+e- collisions, are presented. The data were collected by the OPAL experiment at LEP at centre-of-mass energies between 182 and 209 GeV. Lepton, lifetime and event-shape information is used to tag events containing b quarks with high efficiency. The data are compatible with the Standard Model expectation. The mean ratio of the eight measurements reported here to the Standard Model prediction is 1.055±0.031±0.037, where the first error is statistical and the second systematic.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Amaral P., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barillari T., Barlow R., Batley R., Bechtle P., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2004)
Physics Letters B.
602,
3-4,
p. 167-179
Events with a final state consisting of two or more photons and large missing transverse energy have been observed in e+e- collisions at centre-of-mass energies in the range 192-209 GeV using the OPAL detector at LEP. Cross-section measurements are performed within the kinematic acceptance of the selection and compared with the expectations from the Standard Model process e+e- → νν̄γγ (γ). No evidence for new physics contributions to this final state is observed. Upper limits on σ(e+e- → XX)·BR2(X → Yγ) are derived for the case of stable and invisible Y. In the case of massive Y the combined limits obtained from all the data range from 10 to 60 fb, while for the special case of massless Y the range is 20 to 40 fb. The limits apply to pair production of excited neutrinos (X = ν*, Y = ν), to neutralino production (X = χ̃ 20, Y = χ̃10) and to supersymmetric models in which X=χ̃10 and Y=G̃ is a light gravitino.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Amaral P., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barillari T., Barlow R., Batley R., Bechtle P., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2004)
Physics Letters B.
597,
1,
p. 11-25
A search for the Higgsstrahlung process e+e-→hZ is described, where the neutral Higgs boson h is assumed to decay into hadronic final states. In order to be sensitive to a broad range of models, the search is performed independent of the flavour content of the Higgs boson decay. The analysis is based on e+e- collision data collected by the OPAL detector at energies between 192 and 209 GeV. The search does not reveal any significant excess over the Standard Model background prediction. Results are combined with previous searches at energies around 91 and at 189 GeV. A limit is set on the product of the cross-section and the hadronic branching ratio of the Higgs boson, as a function of the Higgs boson mass. Assuming the hZ coupling predicted by the Standard Model, and a Higgs boson decaying only into hadronic final states, a lower bound of 104 GeV/c2 is set on the mass at the 95% confidence level.
Desch K., Gross E., Zivkovic L., Heinemeyer S. & Weiglein G.
(2004)
Journal of High Energy Physics.
8,
9,
p. 1593-1606
The interplay of prospective experimental information from both the Large Hadron Collider (LHC) and the Linear Collider (LC) in the investigation of the MSSM Higgs sector is analyzed in the SPS 1a and SPS 1b benchmark scenarios. Combining LHC information on the heavy Higgs states of the MSSM with precise measurements of the mass and branching ratios of the lightest CP-even Higgs boson at the LC provides a sensitive consistency test of the MSSM. This allows to set bounds on the trilinear coupling At. In a scenario where LHC and LC only detect one light Higgs boson, the prospects for an indirect determination of MA are investigated. In particular, the impact of the experimental errors of the other SUSY parameters is analyzed in detail. We find that a precision of about 20% (30%) can be achieved for MA = 600(800) GeV.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Amaral P., Anagnostou G., Anderson K., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barillari T., Barlow R., Batley R., Bechtle P., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2004)
Physical Review D.
70,
3,
p. 032005-1-032005-11
032005.
Anomalous quartic couplings between the electroweak gauge bosons may contribute to the ννγγ and qq̄γγ final states produced in e+e- collisions. This analysis uses the LEP2 OPAL data sample at center-of-mass energies up to 209 GeV. Event selections identify ννγγ and qq̄γγ events in which the two photons are reconstructed within the detector acceptance. The cross section for the process e+e-→qq̄γγ is measured. Averaging over all energies, the ratio of the observed e +e-→qq̄γγ cross section to the standard model expectation is R(data/SM) = 0.92±0.07±0.04, where the errors represent the statistical and systematic uncertainties respectively. The ννγγ and qq̄γγ data are used to constrain possible anomalous W+W- γγ and ZZγγ couplings. Combining with previous OPAL results from the W + W- γ final state, the 95% confidence level limits on the anomalous coupling parameters a0Z, a cZ, a0W and acW are found to be -0.007 GeV-2
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Amaral P., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barillari T., Barlow R., Batley R., Bechtle P., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2004)
European Physical Journal C.
35,
1,
p. 1-20
Approximately 438 pb-1 of e+e- data from the OPAL detector, taken with the LEP collider running at centre-of-mass energies of 192-209 GeV, are analyzed to search for evidence of chargino pair production, e+e- →1+χ̃1- or neutralino associated production, e+e- → χ̃20χ̃10 Limits are set at the 95% confidence level on the product of the cross-section for the process e +e- →1+χ̃1- and its branching ratios to topologies containing jets and missing energy, or jets with a lepton and missing energy, and on the product of the cross-section for e+e- →20χ̃10 and its branching ratio to jets. R-parity conservation is assumed throughout this paper. When these results are interpreted in the context of the Constrained Minimal Supersymmetric Standard Model, limits are also set on the masses of the χ̃1±,χ̃10 and χ̃20, and regions of the parameter space of the model are ruled out. Nearly model-independent limits are also set at the 95% confidence level on σ(e+e- →1+χ̃1- assumption that each chargino decays via a W boson, and on σ(e+e- →20 with the χ̃20 assumed to decay via a Z0.
Gross E., Kastner D., Kaiser C. & Fass D.
(2004)
Cell.
117,
5,
p. 601-610
The flavoenzyme Ero1p produces disulfide bonds for oxidative protein folding in the endoplasmic reticulum. Disulfides generated de novo within Ero1p are transferred to protein disulfide isomerase and then to substrate proteins by dithiol-disulfide exchange reactions. Despite this key role of Ero1p, little is known about the mechanism by which this enzyme catalyzes thiol oxidation. Here, we present the X-ray crystallographic structure of Ero1p, which reveals the molecular details of the catalytic center, the role of a CXXCXXC motif, and the spatial relationship between functionally significant cysteines and the bound cofactor. Remarkably, the Ero1p active site closely resembles that of the versatile thiol oxidase module of Erv2p, a protein with no sequence homology to Ero1p. Furthermore, both Ero1p and Erv2p display essential dicysteine motifs on mobile polypeptide segments, suggesting that shuttling electrons to a rigid active site using a flexible strand is a fundamental feature of disulfide-generating flavoenzymes.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Amaral P., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barillari T., Barlow R., Batley R., Bechtle P., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2004)
Physics Letters B.
586,
3-4,
p. 167-182
Using the entire OPAL LEP1 on-peak Z hadronic decay sample, Z→qq̄γ decays were selected by tagging hadronic final states with isolated photon candidates in the electromagnetic calorimeter. Combining the measured rates of Z→qq̄γ decays with the total rate of hadronic Z decays permits the simultaneous determination of the widths of the Z into up- and down-type quarks. The values obtained, with total errors, were Γu=300+19-18 MeVandΓd= 381+12-12 MeV. The results are in good agreement with the Standard Model expectation.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Amaral P., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barillari T., Barlow R., Batley R., Bechtle P., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2004)
Physics Letters B.
585,
3-4,
p. 223-236
Elements of the spin density matrix for W bosons in e+e -→W+W -→qq̄ℓνℓ events are measured from data recorded by the OPAL detector at LEP. This information is used to calculate polarised differential cross-sections and to search for CP-violating effects. Results are presented for W bosons produced in e+e - Collisions with centre-of-mass energies between 183 GeV and 209 GeV. The average fraction of W bosons that are longitudinally polarised is found to be (23.9±2.1±1.1)% compared to a Standard Model prediction of (23.9±0.1)%. All results are consistent with CP conservation.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Amaral P., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barlow R., Batley R., Bechtle P., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2004)
European Physical Journal C.
33,
4,
p. 463-476
Triple gauge boson couplings axe measured from W-pair events recorded by the OPAL detector at LEP at centre-of-mass energies of 183 - 209 GeV with a total integrated luminosity of 680 pb-1. Only CP-conserving couplings are considered and SU(2)×U(1) relations are used, resulting in four independent couplings, κγ, g1z, λγ and g5z. Determining each coupling in a separate fit, assuming the other couplings to take their Standard Model values, we obtain κγ,=0.88-0.08+0.09, g1z=0.987-0.033+0.034, A7=-0.060lg:g|J and g5z=-0.04 -0.12+0.13, where the errors include both statistical and systematic uncertainties. Fits are also performed allowing some of the couplings to vary simultaneously. All results are consistent with the Standard Model predictions.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Amaral P., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barlow R., Batley R., Bechtle P., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2004)
European Physical Journal C.
33,
2,
p. 149-172
A search for pair-produced sfermions, the scalar supersymmetric partners of the Standard Model fermions, under the assumption that R-parity is not conserved has been performed using data collected with the OPAL detector at LEP. The data samples analysed correspond to an integrated luminosity of about 610 pb-1 collected at centre-of-mass energies of √s = 189-209 GeV. An important consequence of R-parity violation is that the lightest supersymmetric particle is expected to be unstable. Searches for R-parity violating decays of charged sleptons, sneutrinos and squarks have been performed under the assumptions that the lightest supersymmetric particle decays promptly and that only one of the R-parity violating couplings is dominant for each of the decay modes considered. Such processes would yield final states consisting of leptons, jets, or both, with or without missing energy. No significant signal-like excess of events has been observed with respect to the Standard Model expectations. Limits on the production cross-sections of sfermions in R-parity violating scenarios are obtained. Constraints on the supersymmetric particle masses are also presented in an R-parity violating framework analogous to the Constrained Minimal Supersymmetric Standard Model.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Amaral P., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barillari T., Barlow R., Batley R., Bechtle P., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2004)
European Physical Journal C.
33,
2,
p. 173-212
Cross-sections and angular distributions for hadronic and lepton-pair final states in e+e- collisions at centre-of-mass energies between 189 GeV and 209 GeV, measured with the OPAL detector at LEP, are presented and compared with the predictions of the Standard Model. The measurements are used to determine the electromagnetic coupling constant αem at LEP2 energies. In addition, the results are used together with OPAL measurements at 91-183 GeV within the S-matrix formalism to determine the γ-Z interference term and to make an almost model-independent measurement of the Z mass. Limits on extensions to the Standard Model described by effective four-fermion contact interactions or the addition of a heavy Z boson are also presented.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Amaral P., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barlow R., Batley R., Bechtle P., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2004)
European Physical Journal C.
32,
4,
p. 453-473
In total 1317 di-lepton events with significant missing transverse momentum were identified in a total data sample of 680 pb-1 collected at e+e- centre-of-mass energies ranging from 183 GeV to 209 GeV. The number of di-lepton events, the dependence on centre-of-mass energy, and the event properties are consistent with expectations from Standard Model processes, predominantly W+W - production with both W bosons decaying leptonically. This topology is also an experimental signature for the pair production of new particles that decay to a charged lepton accompanied by one or more invisible particles. No evidence for new phenomena is apparent. Upper limits are presented on the production cross-section multiplied by the relevant branching ratio squared for sleptons, leptonically decaying charginos and charged Higgs bosons. Mass limits are also given.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Amaral P., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barlow R., Batley R., Bechtle P., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2004)
Physics Letters B.
580,
1-2,
p. 17-36
A study of W+W- events accompanied by hard photon radiation, Eγ > 2.5 GeV, produced in e+e- collisions at LEP is presented. Events consistent with being two on-shell W-bosons and an isolated photon are selected from 681 pb-1 of data recorded at 180 GeV < √s < 209 GeV. From the sample of 187 selected W+W-γ candidates with photon energies greater than 2.5 GeV, the W+W-γ cross-section is determined at five values of √s. The results are consistent with the Standard Model expectation. Averaging over all energies, the ratio of the observed cross-section to the Standard Model expectation is R(data/SM) = 0.99 ± 0.09 ± 0.04, where the errors represent the statistical and systematic uncertainties respectively. These data provide constraints on the related O(α) systematic uncertainties on the measurement of the W-boson mass at LEP. Finally, the data are used to derive 95% confidence level upper limits on possible anomalous contributions to the W+W-γγ and W+W-Z0γ vertices: -0.020 GeV -2 < a0/∧2 < 0.020 GeV-2, -0.053 GeV-2 < ac/∧2 < 0.037 GeV -2, -0.16 GeV-2 < an/∧2 < 0.15 GeV-2, where ∧ represents the energy scale for new physics and a0, ac and an are dimensionless coupling constants.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Amaral P., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barlow R., Batley R., Bechtle P., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2004)
European Physical Journal C.
32,
3,
p. 303-322
A study of Z-boson pair production in e+e- annihilation at center-of-mass energies between 190 GeV and 209 GeV is reported. Final states containing only leptons, (ℓ+ℓ -ℓ+ℓ- and ℓ+ℓ -νν̄), quark and lepton pairs, (qq̄ℓ +ℓ-, qq̄νν̄) and only hadrons (qq̄qq̄) are considered. In all states with at least one Z boson decaying hadronically, lifetime, lepton and event-shape tags are used to separate bb̄ pairs from qq̄ final states. Limits on anomalous ZZγ and ZZZ couplings are derived from the measured cross sections and from event kinematics using an optimal observable method. Limits on low scale gravity with large extra dimensions are derived from the cross sections and their dependence on polar angle.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Amaral P., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barillari T., Barlow R., Batley R., Bechtle P., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2004)
Physical Review D.
69,
3,
032002.
We present the first experimental results based on the jet boost algorithm, a technique to select unbiased samples of gluon jets in e+e - annihilations, i.e. gluon jets free of biases introduced by event selection or jet finding criteria. Our results are derived from hadronic Z 0 decays observed with the OPAL detector at the LEP e +e- collider at CERN. First, we test the boost algorithm through studies with HERWIG Monte Carlo events and find that it provides accurate measurements of the charged particle multiplicity distributions of unbiased gluon jets for jet energies larger than about 5 GeV, and of the jet particle energy spectra (fragmentation functions) for jet energies larger than about 14 GeV. Second, we apply the boost algorithm to our data to derive unbiased measurements of the gluon jet multiplicity distribution for energies between about 5 and 18 GeV, and of the gluon jet fragmentation function at 14 and 18 GeV. In conjunction with our earlier results at 40 GeV, we then test QCD calculations for the energy evolution of the distributions, specifically the mean and first two nontrivial normalized factorial moments of the multiplicity distribution, and the fragmentation function. The theoretical results are found to be in global agreement with the data, although the factorial moments are not svell described for jet energies below about 14 GeV.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Amaral P., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barlow R., Batley R., Bechtle P., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2004)
European Physical Journal C.
35,
2,
p. 149-158
The branching ratio of beauty hadrons to final states containing two charm hadrons, Br(b → DD̄X), has been measured using an inclusive method in hadronic Z0 decays with the OPAL detector at LEP. The impact parameter significance of tracks opposite tagged b-jets is used to differentiate b → DD̄X decays from other decays. The result is Br(b → DD̄X) = (10.0 ± 3.2(stat.)-2.9+ 2.4(det.)-9.0+10.4(phys.))%, where "det." is the systematic uncertainty due to the modelling of the detector, and "phys." is the systematic uncertainty due to the modelling of the underlying physics. Using this result, the average number of charm plus anti-charm quarks produced in a beauty quark decay, nc, is found to be 1.12-0.10+0.11.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Amaral P., Anagnostou G., Anderson K., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barillari T., Barlow R., Batley R., Bechtle P., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2004)
European Physical Journal C.
36,
3,
p. 297-308
Bose-Einstein correlations between like-sign charged-particle pairs in e+e- → W+W- events recorded with the OPAL detector at LEP at centre-of-mass energies between 183 GeV and 209 GeV are studied. Recently proposed methods which allow direct searches for correlations in the data via distributions of test variables are used to investigate the presence of correlations between hadrons originating from different W bosons in W+W- → qq̄qq̄ events. Within the statistics of the data sample no evidence for inter-WW Bose-Einstein correlations is obtained. The data are also compared with predictions of a recent implementation of Bose-Einstein correlation effects in the Monte Carlo model PYTHIA.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Amaral P., Anagnostou G., Anderson K., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barillari T., Barlow R., Batley R., Bechtle P., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2004)
European Physical Journal C.
37,
1,
p. 49-78
This report summarizes the final results from the OPAL collaboration on searches for neutral Higgs bosons predicted by the Minimal Supersymmetric Standard Model (MSSM). CP-conserving and, for the first time at LEP, CP-violating scenarios are studied. New scenarios are also included, which aim to set the stage for Higgs searches at future colliders. The results are based on the data collected with the OPAL detector at e+e- centre-of-mass energies up to 209 GeV. The data are consistent with the prediction of the Standard Model with no Higgs boson produced. Model-independent limits are derived for the cross-sections of a number of event topologies motivated by predictions of the MSSM. Limits on Higgs boson masses and other MSSM parameters are obtained for a number of representative MSSM benchmark scenarios. For example, in the CP-conserving scenario m h-max where the MSSM parameters are adjusted to predict the largest range of values for mh at each tan β, and for a top quark mass of 174.3GeV, the domain 0.7 < tan β < 1.9 is excluded at the 95% confidence level and Higgs boson mass limits of mh > 84.5GeV and mA > 85.0 GeV are obtained. For the CP-violating benchmark scenario CPX which, by construction, enhances the CP-violating effects in the Higgs sector, the domain tan β < 2.8 is excluded but no universal limit can be set on the Higgs boson masses.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Amaral P., Anagnostou G., Anderson K., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barillari T., Barlow R., Batley R., Bechtle P., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2004)
European Physical Journal C.
37,
1,
p. 25-47
Flavour inclusive, udsc and b fragmentation functions in unbiased jets, and flavour inclusive, udsc, b and gluon fragmentation functions in biased jets are measured in e+e- annihilations from data collected at centre-of-mass energies of 91.2, and 183-209 GeV with the OPAL detector at LEP. The unbiased jets are defined by hemispheres of inclusive hadronic events, while the biased jet measurements are based on three-jet events selected with jet algorithms. Several methods are employed to extract the fragmentation functions over a wide range of scales. Possible biases are studied in the results obtained. The fragmentation functions are compared to results from lower energy +e- experiments and with earlier LEP measurements and are found to be consistent. Scaling violations are observed and are found to be stronger for the fragmentation functions of gluon jets than for those of quarks. The measured fragmentation functions are compared to three recent theoretical next-to-leading order calculations and to the predictions of three Monte Carlo event generators. While the Monte Carlo models are in good agreement with the data, the theoretical predictions fail to describe the full set of results, in particular the b and gluon jet measurements.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Amaral P., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barillari T., Barlow R., Batley R., Bechtle P., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2004)
European Physical Journal C.
35,
4,
p. 437-455
Tau lepton decays with open strangeness in the final state are measured with the OPAL detector at LEP to determine the strange hadronic spectral function of the τ lepton. The decays τ-→ (Kπ) -ντ, (Kππ)-ντ and (Kπππ) - with final states consisting of neutral and charged kaons and pions have been studied. The invariant mass distributions of 93.4% of these final states have been experimentally determined. Monte Carlo simulations have been used for the remaining 6.6% and for the strange final states including η mesons. The reconstructed strange final states, corrected for resolution effects and detection efficiencies, yield the strange spectral function of the τ lepton. The moments of the spectral function and the ratio of strange to non-strange moments, which are important input parameters for theoretical analyses, are determined. Furthermore, the branching fractions B(τ - → K-π0ντ) = (0.471 ±0.059stat±0.023sys) % and B(τ -→ K-π+π-ντ) = (0.415 ± 0.053stat ± 0.040sys) % have been measured.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Amaral P., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barlow R., Batley J., Bechtle P., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2004)
European Physical Journal C.
35,
3,
p. 293-312
Gluon jets with a mean energy of 22 GeV and purity of 95% are selected from hadronic Z0 decay events produced in e+e- annihilations. A subsample of these jets is identified which exhibits a large gap in the rapidity distribution of particles within the jet. After imposing the requirement of a rapidity gap, the gluon jet purity is 86%. These jets are observed to demonstrate a high degree of sensitivity to the presence of color reconnection, i.e. higher order QCD processes affecting the underlying color structure. We use our data to test three QCD models which include a simulation of color reconnection: one in the Ariadne Monte Carlo, one in the Herwig Monte Carlo, and the other by Rathsman in the Pythia Monte Carlo. We find the Rathsman and Ariadne color reconnection models can describe our gluon jet measurements only if very large values are used for the cutoff parameters which serve to terminate the parton showers, and that the description of inclusive Z0 data is significantly degraded in this case. We conclude that color reconnection as implemented by these two models is disfavored. The signal from the Herwig color reconnection model is less clear and we do not obtain a definite conclusion concerning this model. In a separate study, we follow recent theoretical suggestions and search for glueball-like objects in the leading part of the gluon jets. No clear evidence is observed for these objects.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Amaral P., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barlow R., Batley R., Bechtle P., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2003)
Physics Letters B.
577,
3-4,
p. 93-108
A search for the single production of doubly-charged Higgs bosons is performed using e+e- collision data collected by the OPAL experiment at centre-of-mass energies between 189 GeV and 209 GeV. No evidence for the existence of H±± is observed. Upper limits are derived on hee, the Yukawa coupling of the H±± to like-signed electron pairs. A 95% confidence level upper limit of hee < 0. 071 is inferred for M(H±±) < 160 GeV assuming that the sum of the branching fractions of the H±± to all lepton flavour combinations is 100%. Additionally, indirect constraints on hee from Bhabha scattering at centre-of-mass energies between 183 GeV and 209 GeV, where the H±± would contribute via t-channel exchange, are derived for M(H±±) < 2 TeV. These are the first results both from a single production search and on constraints from Bhabha scattering reported from LEP.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Amaral P., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barlow R., Batley R., Bechtle P., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2003)
Physics Letters B.
577,
1-2,
p. 18-36
A measurement of the forward-backward asymmetries of e+e - → bb̄ and e+e- → cc̄ events using electrons and muons produced in semileptonic decays of bottom and charm hadrons is presented. The outputs of two neural networks designed to identify b → ℓ- and c → ℓ+ decays are used in a maximum likelihood fit to a sample of events containing one or two identified leptons. The b and c quark forward-backward asymmetries at three centre-of-mass energies √s and the average B mixing parameter χ are determined simultaneously in the fit. Using all data collected by OPAL near the Z resonance, the asymmetries are measured to be: AFBbb̄ = (4.7 ± 1.8 ± 0.1)%, AFBcc̄ = (-6.8 ± 0.9)% at 〈√s〉 = 89.51 GeV, AFBbb̄ = (9.72 ± 0.42 ± 0.15)%, A FBcc̄ = (5.68 ± 0.54 ± 0.39)% at 〈√s〉 = 91.25 GeV, AFBbb̄ = (10.3 ± 1.5 ± 0.2)%, AFBcc̄ = (14.6 ± 2.0 ± 0.8)% at 〈√s〉 = 92.95 GeV. For the average B mixing parameter, a value of: χ = (13.12 ± 0.49 ± 0.42)% is obtained. In each case the first uncertainty is statistical and the second systematic. These results are combined with other OPAL measurements of the b and c forward-backward asymmetries, and used to derive a value for the effective electroweak mixing angle for leptons sin2θ effℓ of 0.23238 ± 0.00052.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Amaral P., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barlow R., Batley R., Bechtle P., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2003)
European Physical Journal C.
31,
4,
p. 491-502
For the first time at LEP the production of prompt photons is studied in the collisions of quasi-real photons using the OPAL data taken at e +e- centre-of-mass energies between 183 GeV and 209 GeV. The total inclusive production cross-section for isolated prompt photons in the kinematic range of transverse momentum pTγ > 3.0 GeV and pseudorapidity |ηγ| < 1 is determined to be σtot = 0.32 ± 0.04 (stat) ± 0.04 (sys) pb. Differential cross-sections are compared to the predictions of a next-to-leading-order (NLO) calculation.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Amaral P., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barlow R., Batley R., Bechtle P., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2003)
European Physical Journal C.
31,
3,
p. 307-325
Di-jet production is studied in collisions of quasi-real photons at e +e- centre-of-mass energies √see from 189 to 209 GeV at LEP. The data were collected with the OPAL detector. Jets are reconstructed using an inclusive k⊥-clustering algorithm for all cross-section measurements presented. A cone jet algorithm is used in addition to study the different structure of the jets resulting from either of the algorithms. The inclusive di-jet cross-section is measured as a function of the mean transverse energy ĒTjet of the two leading jets, and as a function of the estimated fraction of the photon momentum carried by the parton entering the hard sub-process, xγ, for different regions of ĒTjet. Angular distributions in di-jet events are measured and used to demonstrate the dominance of quark and gluon initiated processes in different regions of phase space. Furthermore the inclusive di-jet cross-section as a function of |ηjet| and |Δηjet| is presented, where ηjet is the jet pseudo-rapidity. Different regions of the xγ+-x γ--space are explored to study and control the influence of an underlying event. The results are compared to next-to-leading order perturbative QCD calculations and to the predictions of the leading order Monte Carlo generator PYTHIA.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Amaral P., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barlow R., Batley R., Bechtle P., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2003)
European Physical Journal C.
31,
3,
p. 281-305
A search for pair-produced leptoquarks is performed using e +e- collision events collected by the OPAL detector at LEP at centre-of-mass energies between 189 and 209 GeV. The data sample corresponds to a total integrated luminosity of 596 pb-1. The leptoquarks are assumed to be produced via couplings to the photon and the Z0. For a given search channel only leptoquark decays involving a single lepton generation are considered. No evidence for leptoquark pair production is observed. Lower limits on masses for scalar and vector leptoquarks are calculated. The results improve most of the LEP limits derived from previous searches for the pair production process by 10-25 GeV, depending on the leptoquark quantum numbers.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Amaral P., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Barbirio E., Barlow R., Batley R., Bechtle P., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2003)
European Physical Journal C.
30,
4,
p. 467-475
The decay chain b → B̄ → D**0 ℓ-ν̄X, D**0 → D *+π-, D*+ → D 0π+, D0 → (Kπ or Kπ is identified in a sample of 3.9 million hadronic Z decays collected with the OPAL detector at LEP. The branching ratio BR (b → B̄) × BR (B̄ → D10ℓ-ν̄X) × BR (D 10 → D*+π-) is measured to be (2.64 ± 0.79 (stat) ± 0.39 (syst)) × 10 -3 for the JP = 1+ (D10) state. For decays into the JP = 2+ (D2*0) state, an upper limit of 1.4 × 10-3 is placed on the branching ratio at the 95% confidence level.
Abbiendi G., Ainsley C., Akesson R., Alexander G., Allison J., Amaral P., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barlow R., Batley R., Bechtle P., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2003)
Physics Letters B.
568,
3-4,
p. 181-190
Non-commutative QED would lead to deviations from the Standard Model depending on a new energy scale ΛNC and a unique direction in space defined by two angles η and ξ. In this analysis, η is defined as the angle between the unique direction and the rotation axis of the earth. The predictions of a tree level calculation for the process e+e - → γγ are evaluated for the specific orientation of the OPAL detector and compared to the measurements. Distributions of the polar and azimuthal photon angles are used to extract limits on the energy scale ΛNC depending on the model parameter η. It is shown that the time dependence of the total cross-section could be used to determine the model parameter ξ if there were a detectable signal. This is the first experimental study of non-commutative QED at an e+e- collider.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Amaral P., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barlow R., Batley R., Bechtle P., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2003)
European Physical Journal C.
29,
4,
p. 479-489
A search was performed for charginos with masses close to the mass of the lightest neutralino in e+e- collisions at centre-of-mass energies of 189-209 GeV recorded by the OPAL detector at LEP. Events were selected if they had an observed high-energy photon from initial state radiation, reducing the dominant background from two-photon scattering to a negligible level. No significant excess over Standard Model expectations has been observed in the analysed data set corresponding to an integrated luminosity of 570 pb-1. Upper limits were derived on the chargino pair-production cross-section, and lower limits on the chargino mass were derived in the context of the Minimal Supersymmetric Extension of the Standard Model for the gravity- and anomaly-mediated Supersymmetry breaking scenarios.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Amaral P., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey L., Barberio E., Barlow R., Batley R., Bechtle P., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2003)
European Physical Journal C.
29,
4,
p. 463-478
A study of b quark hadronisation is presented using inclusively reconstructed B hadrons in about four million hadronic Z decays recorded in 1992-2000 with the OPAL detector at LEP. The data are compared to different theoretical models, and fragmentation function parameters of these models are fitted. The average scaled energy of weakly decaying B hadrons is determined to be 〈xE〉 = 0.7193 ± 0.0016(stat)-0.0033+0.0038(syst).
Heister J. A., Schael S., Barate R., Brunelière R., De Bonis I., Decamp D., Goy C., Jezequel S., Lees J. R., Martin F., Merle E., Minard M. N., Pietrzyk B., Trocmé B., Boix G., Bravo S., Landsman H., Duchovni E., Gross E. & Levinson L.
(2003)
Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics.
565,
1-4,
p. 61-75
The four LEP collaborations, ALEPH, DELPHI, L3 and OPAL, have collected a total of 2461 pb−1 of e+ e− collision data at centre-of-mass energies between189 and 209 GeV. The data are used to search for the Standard Model Higgs boson. The search results of the four collaborations are combined and examined in a likelihood test for their consistency with two hypotheses: the background hypothesis and the signal plus background hypothesis. The corresponding confidences have been computed as functions of the hypothetical Higgs boson mass. A lower bound of114.4 GeV/c2 is established, at the 95% confidence level, on the mass of the Standard Model Higgs boson. The LEP data are also used to set upper bounds on the HZZ coupling for various assumptions concerning the decay of the Higgs boson.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Amaral P., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barlow R., Batley R., Bechtle P., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2003)
Physics Letters B.
559,
3-4,
p. 131-143
We observe Bose-Einstein correlations in π0 pairs using back-to-back two jet hadronic events from Z0 decays in the data sample collected by the OPAL detector at LEP 1 from 1991 to 1995. Using a static Gaussian picture for the pion emitter source, we obtain the chaoticity parameter λ = 0.55 ± 0.10 ± 0.10 and the source radius R = (0.59 ± 0.08 ± 0.05) fm. According to the JETSET and HERWIG Monte Carlo models, the Bose-Einstein correlations in our data sample largely connect π0s originating from the decays of different hadrons. Prompt pions formed at string break-ups or cluster decays only form a small fraction of the sample.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Amaral P., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barillari T., Barlow R., Batley R., Bechtle P., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2003)
European Physical Journal C.
28,
1,
p. 45-54
The exclusive production of proton-antiproton pairs in the collisions of two quasi-real photons has been studied using data taken at √see = 183 GeV and 189 GeV with the OPAL detector at LEP. Results are presented for pp invariant masses, W, in the range 2.15 < W < 3.95 GeV. The cross-section measurements are compared with previous data and with recent analytic calculations based on the quark-diquark model.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Amaral P., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barlow R., Batley R., Bechtle P., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2003)
European Physical Journal C.
27,
3,
p. 311-329
This paper describes topological searches for neutral scalar bosons S0 produced in association with a Z0 boson via the Bjorken process e+e- → S0Z0 at centre-of-mass energies of 91 GeV and 183-209 GeV. These searches are based on studies of the recoil mass spectrum of Z0 → e+e- and μ+μ-and on a search for S0Z0 with Z0 → νν̄ and S0 → e+e- or photons. They cover the decays of the S0 into an arbitrary combination of hadrons, leptons, photons and invisible particles as well as the possibility that it might be stable. No indication for a signal is found in the data and upper limits on the cross section of the Bjorken process are calculated. Cross-section limits are given in terms of a scale factor k with respect to the Standard Model cross section for the Higgs-strahlung process e+e- → HSM0Z0. These results can be interpreted in general scenarios independently of the decay modes of the S0. The examples considered here are the production of a single new scalar particle with a decay width smaller than the detector mass resolution, and for the first time, two scenarios with continuous mass distributions, due to a single very broad state or several states close in mass.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Amaral P., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barlow R., Batley R., Bechtle P., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2003)
European Physical Journal C.
27,
4,
p. 483-495
We have analysed the data collected by OPAL at centre-of-mass energies between 189 and 209 GeV searching for Higgs boson candidates from the process e+e- → h0Z0 followed by the decay of h0 → A0A0 where A0 is the CP-odd Higgs boson. The search is done in the region where the A0 mass, mA, is below the production threshold for bb̄, and the CP-even Higgs boson mass mh is within the range 45-86 GeV/c2. In this kinematic range, the decay of h0 → A0A0 may be dominant and previous Higgs boson searches have very small sensitivities. This search can be interpreted within any model that predicts the existence of at least one scalar and one pseudoscalar Higgs boson. No excess of events is observed above the expected Standard Model backgrounds. Model-independent limits on the cross-section for the process e+e- → h0Z0 are derived assuming 100% decays of the h0 into A0A0 and 100% decays of the A0A0 into each of the following final 3states: cc̄cc̄, gggg, τ+τ-τ+τ-, cc̄gg, ggτ+τ- and cc̄τ+τ-. The results are also interpreted in the CP-conserving no-mixing MSSM scenario, where the region 45 ≤ mh ≤ 85 GeV/c2 and 2 ≤ mA ≤ 9.5 GeV/c2 is excluded.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Amaral P., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barlow R., Batley R., Bechtle P., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2003)
European Physical Journal C.
27,
4,
p. 467-481
Charged particle momentum distributions are studied in the reaction e-e- → hadrons, using data collected with the OPAL detector at centre-of-mass energies from 192 GeV to 209 GeV. The data correspond to an average centre-of-mass energy of 201.7 GeV and a total integrated luminosity of 433 pb-1. The measured distributions and derived quantities, in combination with corresponding results obtained at lower centre-of-mass energies, are compared to QCD predictions in various theoretical approaches to study the energy dependence of the strong interaction and to test QCD as the theory describing it. In general, a good agreement is found between the measurements and the corresponding QCD predictions.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Amaral P., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barlow R., Batley R., Bechtle P., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2003)
European Physical Journal C.
26,
4,
p. 479-503
This paper summarises the search for the Standard Model Higgs boson in e+e- collisions at centre-of-mass energies up to 209 GeV performed by the OPAL Collaboration at LEP. The consistency of the data with the background hypothesis and various Higgs boson mass hypotheses is examined. No indication of a signal is found in the data and a lower bound of 112.7 GeV/c2 is obtained on the mass of the Standard Model Higgs boson at the 95% CL.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Amaral P., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barlow R., Batley R., Bechtle P., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2003)
Physics Letters B.
551,
1-2,
p. 35-48
The τ- → μ-v̄μvτ branching ratio has been measured using data collected from 1990 to 1995 by the OPAL detector at the LEP collider. The resulting value of B(τ- → μ-v̄μvτ)0.1734 ±0.0009(stat)±0.0006(syst) has been used in conjunction with other OPAL measurements to test lepton universality, yielding the coupling constant ratios gμ/ge = 1.0005±0.0044 and gτ/ge = 1.0031±0.0048, in good agreement with the Standard Model prediction of unity. A value for the Michel parameter η = 0.004±0.037 has also been determined and used to find a limit for the mass of the charged Higgs boson, mH± > 1.28 tan β, in the Minimal Supersymmetric Standard Model.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Anagnostou G., Anderson K., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barlow R., Batley R., Bechtle P., Behnke T., Bell K., Bell P., Bella G., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2003)
European Physical Journal C.
26,
3,
p. 321-330
A novel method of determining the mass of the W boson in the W+W- → lνlν channel is presented and applied to 667 pb-1 of data recorded at center-of-mass energies in the range 183-207 GeV with the OPAL detector at LEP. The measured energies of charged leptons and the results of a new procedure based on an approximate kinematic reconstruction of the events are combined to give: Mw = 80.41 ± 0.41 ± 0.13 GeV, where the first error is statistical and the second is systematic. The systematic error is dominated by the uncertainty on the lepton energy, which is calibrated using data, and the parameterization of the variables used in the fitting, which is obtained using Monte Carlo events. Both of these are limited by statistics.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Amaral P., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barlow R., Batley R., Bechtle P., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2003)
European Physical Journal C.
26,
3,
p. 331-344
The process e+e- → γγ(γ) is studied using data collected by the OPAL detector at LEP between the years 1997 and 2000. The data set corresponds to an integrated luminosity of 672.3 pb-1 at centre-of-mass energies lying between 181 GeV and 209 GeV. Total and differential cross-sections are determined and found to be in good agreement with the predictions of QED. Pits to the observed angular distributions are used to set limits on parameters from several models of physics beyond the Standard Model such as cut-off parameters, contact interactions of the type e+e-γγ, gravity in extra spatial dimensions and excited electrons. In events with three photons in the final state the mass spectrum of photon pairs is investigated. No narrow resonance X → γγ is found and limits are placed on the product of the Xγ production cross-section and branching ratio.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Amaral P., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barlow R., Batley R., Bechtle P., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2002)
Physics Letters B.
546,
1-2,
p. 29-47
The b quark forward-backward asymmetry has been measured using hadronic Z0 decays collected by the OPAL experiment at LEP. Z0 → bb̄ decays were selected using a combination of secondary vertex and lepton tags, and the sign of the b quark charge was determined using an inclusive tag based on jet, vertex and kaon charges. The results, corrected to the quark level, are: AFBb= 0.0582 ± 0.0153 ± 0.0012 at √s = 89.50 GeV, AFBb= 0.0977 ± 0.0036 ± 0.0018 at √s = 91.26 GeV, AFBb= 0.1221 ± 0.0123 ± 0.0025 at √s = 92.91 GeV, where the first error is statistical and the second systematic in each case. Within the framework of the Standard Model, the result is interpreted as a measurement of the effective weak mixing angle for electrons of sin2θweff,e = 0.23205 ± 0.00068.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Amaral P., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barlow R., Batley R., Bechtle P., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2002)
Physics Letters B.
545,
3-4,
p. 272-284
Searches for a scalar top quark and a scalar bottom quark have been performed using a data sample of 438 pb-1 at centre-of-mass energies of √s = 192-209 GeV collected with the OPAL detector at LEP. No evidence for a signal was found. The 95% confidence level lower limit on the scalar top quark mass is 97.6 GeV if the mixing angle between the supersymmetric partners of the left- and right-handed states of the top quark is zero. When the scalar top quark decouples from the Z0 boson, the lower limit is 95.7 GeV. These limits were obtained assuming that the scalar top quark decays into a charm quark and the lightest neutralino, and that the mass difference between the scalar top quark and the lightest neutralino is larger than 10 GeV. The complementary decay mode of the scalar top quark decaying into a bottom quark, a charged lepton and a scalar neutrino has also been studied. The lower limit on the scalar top quark mass is 96.0 GeV for this decay mode, if the mass difference between the scalar top quark and the scalar neutrino is greater than 10 GeV and if the mixing angle of the scalar top quark is zero. From a search for the scalar bottom quark, a mass limit of 96.9 GeV was obtained if the mass difference between the scalar bottom quark and the lightest neutralino is larger than 10 GeV.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Amaral P., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barlow R., Batley R., Bechtle P., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2002)
Physics Letters B.
544,
1-2,
p. 44-56
A search is performed for production of short-lived particles in e+e- → XY, with X → γγ and Y → ff̄, for scalar X and scalar or vector Y. Model-independent limits in the range of 25-60 femtobarns are presented on (e+e- → XY) × B(X → γγ) × B(Y → ff̄) for centre-of-mass energies in the range 205-207 GeV. The data from all LEP centre-of-mass energies 88-209 GeV are also interpreted in the context of fermiophobic Higgs boson models, for which a lower mass limit of 105.5 GeV is obtained for a "benchmark" fermiophobic Higgs boson.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Amaral P., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barlow R., Batley R., Bechtle P., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2002)
Physics Letters B.
544,
1-2,
p. 57-72
A search for charged excited leptons decaying into a lepton and a photon has been performed using approximately 680 pb-1 of e+e- collision data collected by the OPAL detector at LEP at centre-of-mass energies between 183 and 209 GeV. No evidence for their existence was found. Upper limits on the product of the cross-section and the branching fraction are inferred. Using results from the search for singly produced excited leptons, upper limits on the ratio of the excited lepton coupling constant to the compositeness scale are calculated. From pair production searches, 95% confidence level lower limits on the masses of excited electrons, muons and taus are determined to be 103.2 GeV.
Förster A., Böttcher I., Förster A., Gross E., Koczoń P., Kohlmeyer B., Menzel M., Naumann L., Oeschler H., Pühlhofer F., Scheinast W., Schwab E., Senger P., Shin Y., Ströbele H., Sturm C., Uhlig F., Waluś W. & Wagner A.
(2002)
Journal of Physics G: Nuclear and Particle Physics.
28,
7,
p. 2011-2015
363.
At the Kaon spectrometer KaoS at SIS/GSI, the production of kaons and antikaons in heavy-ion reactions at a beam energy of 1.5 A GeV has been measured for the collision systems Ni+Ni and Au + Au. The K-/K + ratio is found to be constant for both systems and as a function of impact parameter but the slopes of K+ and K- spectra differ for all impact parameters. Furthermore, the respective polar angle distributions will be presented as a function of centrality.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Anagnostou G., Anderson K., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barlow R., Batley R., Bechtle P., Behnke T., Bell K., Bell P., Bella G., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2002)
Physics Letters B.
533,
3-4,
p. 207-222
The hadronic structure function of the photon F2γ (x, Q2) is measured as a function of Bjorken x and of the photon virtuality Q2 using deep-inelastic scattering data taken by the OPAL detector at LEP at e+e- centre-of-mass energies from 183 to 209 GeV. Previous OPAL measurements of the x dependence of F2γ are extended to an average Q2 of (Q2) = 780 GeV2 using data in the kinematic range 0.15 < × < 0.98. The Q2 evolution of F2γ is studied for 12.1 < (Q2) < 780 GeV2 using three ranges of x. As predicted by QCD, the data show positive scaling violations in F2γ with F2γ (Q2)/α = (0.08 ± 0.02-0.03+0.05)+(0.13 ± 0.01 -0.01+0.01) 1n Q2, where Q2 is in GeV2, for the central x region 0.10-0.60. Several parameterisations of F2γ are in qualitative agreement with the measurements whereas the quark-parton model prediction fails to describe the data.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barlow R., Batley R., Behnke T., Bell K., Bell P., Bella G., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2002)
European Physical Journal C.
24,
1,
p. 17-31
The interaction of virtual photons is investigated using the reaction e+e- → e+e- hadrons based on data taken by the OPAL experiment at e+e- centre-of-mass energies √See = 189 - 209 GeV, for W > 5 GeV and at an average Q2 of 17.9 GeV2. The measured cross-sections are compared to predictions of the Quark Parton Model (QPM), to the Leading Order QCD Monte Carlo model PHOJET, to the NLO prediction for the reaction e+e- → e+e- qq̄, and to BFKL calculations. PHOJET, NLO e+e- → e+e- qq̄, and QPM describe the data reasonably well, whereas the cross-section predicted by a Leading Order BFKL calculation is too large.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barlow R., Batley R., Behnke T., Bell K., Bell P., Bella G., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2002)
European Physical Journal C.
24,
1,
p. 1-15
The process e+e- → e+e-Z/γ* is studied with the OPAL detector at LEP at a centre of mass energy of √s = 189 GeV. The cross-section times the branching ratio of the Z/γ* decaying into hadrons is measured within Lorentz invariant kinematic limits to be (1.2 ± 0.3 ± 0.1) pb for invariant masses of the hadronic system between 5 GeV and 60 GeV and (0.7 ± 0.2 ± 0.1) pb for hadronic masses above 60 GeV. The differential cross-sections of the Mandelstam variables ŝ, t̂, and û are measured and compared with the predictions from the Monte Carlo generators grc4f and PYTHIA. From this, based on a factorisation ansatz, the total and differential cross-sections for the subprocess eγ → eZ/γ* are derived.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Ball A., Barberio E., Barlow R., Batley R., Behnke T., Bell K., Bella G., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2002)
European Physical Journal C.
23,
1,
p. 1-11
A search for first generation scalar and vector leptoquarks (LQ) as well as for squarks (q̃)in R-parity violating SUSY models with the direct decay of the q̃ into Standard Model particles has been performed using e +e- collisions collected with the OPAL detector at LEP at an e+e- centre-of-mass energy √See of 189 GeV. The data correspond to an integrated luminosity of about 160 pb -1. The dominant process for this search is eq → LQ/q̄tild; → eq, νq, where a photon, which has been radiated by one of the beam electrons, serves as a source of quarks. The numbers of selected events found in the two decay channels are in agreement with the expectations from Standard Model processes. This result allows to set lower limits at the 95% confidence level on the mass of first generation scalar and vector leptoquarks, and of squarks in R-parity violating SUSY models. For Yukawa couplings λ to fermions larger than √4παem, the mass limits range from 121 GeV/c2 to 175 GeV/c2 (149 GeV/c2 to 188 GeV/c2) depending on the branching ratio α of the scalar (vector) leptoquark state. Furthermore, limits are set on the Yukawa couplings λ for leptoquarks and λ1jk for squarks, and on β as a function of the scalar leptoquark/squark mass.
Gross E., Sevier C., Vala A., Kaiser C. & Fass D.
(2002)
Nature Structural Biology.
9,
1,
p. 61-67
Erv2p is an FAD-dependent sulfhydryl oxidase that can promote disulfide bond formation during protein biosynthesis in the yeast endoplasmic reticulum. The structure of Erv2p, determined by X-ray crystallography to 1.5 Å resolution, reveals a helix-rich dimer with no global resemblance to other known FAD-binding proteins or thiol oxidoreductases. Two pairs of cysteine residues are required for Erv2p activity. The first (Cys-Gly-Glu-Cys) is adjacent to the isoalloxazine ring of the FAD. The second (Cys-Gly-Cys) is part of a flexible C-terminal segment that can swing into the vicinity of the first cysteine pair in the opposite subunit of the dimer and may shuttle electrons between substrate protein dithiols and the FAD-proximal disulfide.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barlow R., Batley R., Bechtle R., Behnke T., Bell K., Bell P., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2002)
Physics Letters B.
526,
3-4,
p. 233-246
Searches for first generation scalar and vector leptoquarks, and for squarks in R-parity violating SUSY models with the direct decay of the squark into Standard Model particles, have been performed using e+e∼ collisions collected with the OPAL detector at LEP at e+e∼ centre-of-mass energies between 189 and 209 GeV. No excess of events is found over the expectation from Standard Model background processes. Limits are computed on the leptoquark couplings for different values of the branching ratio to electron-quark final states.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barlow R., Batley R., Bechtle P., Behnke T., Bell K., Bell P., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2002)
Physics Letters B.
526,
3-4,
p. 221-232
A search for pair-produced doubly charged Higgs bosons has been performed using data samples corresponding to an integrated luminosity of about 614 pb-1 collected with the OPAL detector at LEP at centre-of-mass energies between 189 GeV and 209 GeV. No evidence for a signal has been observed. A mass limit of 98.5 GeV/c2 at the 95% confidence level has been set for the doubly charged Higgs particle in left-right symmetric models. This is the first search for doubly charged Higgs bosons at centre-of-mass energies larger than 91 GeV.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barlow R., Batley R., Behnke T., Bell K., Bell P., Bella G., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2001)
Physics Letters B.
523,
1-2,
p. 35-52
Correlations among hadrons with the same electric charge produced in Z0 decays are studied using the high statistics data collected from 1991 through 1995 with the OPAL detector at LEP. Normalized factorial cumulants up to fourth order are used to measure genuine particle correlations as a function of the size of phase space domains in rapidity, azimuthal angle and transverse momentum. Both all-charge and like-sign particle combinations show strong positive genuine correlations. One-dimensional cumulants initially increase rapidly with decreasing size of the phase space cells but saturate quickly. In contrast, cumulants in two- and three-dimensional domains continue to increase. The strong rise of the cumulants for all-charge multiplets is increasingly driven by that of like-sign multiplets. This points to the likely influence of Bose-Einstein correlations. Some of the recently proposed algorithms to simulate Bose-Einstein effects, implemented in the Monte Carlo model Pythia, are found to reproduce reasonably well the measured second- and higher-order correlations between particles with the same charge as well as those in all-charge particle multiplets.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barlow R., Batley R., Behnke T., Bell K., Bell P., Bella G., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2001)
Physics Letters B.
520,
1-2,
p. 1-10
The inclusive branching ratio for the process b → τ-ν̄τX) has been measured using hadronic Z decays collected by the OPAL experiment at LEP in the years 1992-2000. The result is: BR(b → τ-ν̄τX) = (2.78 ± 0.18 ± 0.51)%. This measurement is consistent with the Standard Model expectation and puts a constraint of tan β/MH± < 0.53 GeV-1 at the 95% confidence level on Type II Two Higgs Doublet Models.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barlow R., Batley R., Behnke T., Bell K., Bell P., Bella G., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2001)
Physics Letters B.
521,
3-4,
p. 181-194
A search for single top quark production via flavour changing neutral currents (FCNC) was performed with data collected by the OPAL detector at the e+e- collider LEP. Approximately 600 pb-1 of data collected at √s = 189-209 GeV were used to search for the FCNC process e+e- → tc(u) → bWc(u). This analysis is sensitive to the leptonic and the hadronic decay modes of the W boson. No evidence for a FCNC process is observed. Upper limits at the 95% confidence level on the single top production cross-section as a function of the centre-of-mass energy are derived. Limits on the anomalous coupling parameters κγ and κZ are determined from these results.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barlow R., Batley R., Behnke T., Bell K., Bell P., Bella G., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2001)
Physics Letters B.
519,
1-2,
p. 23-32
We search for lepton flavour violating events (eμ, eτ and μτ) that could be directly produced in e+e- annihilations, using the full available data sample collected with the OPAL detector at centre-of-mass energies between 189 GeV and 209 GeV. In general, the Standard Model expectations describe the data well for all the channels and at each √s. A single eμ event is observed where according to our Monte Carlo simulations only 0.019 events are expected from Standard Model processes. We obtain the first limits on the cross-sections σ (e+e- → eμ, eτ and μτ) as a function of √s at LEP2 energies.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barlow R., Batley R., Behnke T., Bell K., Bell P., Bella G., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2001)
Physics Letters B.
516,
1-2,
p. 1-20
Data on muon pair production obtained by the OPAL Collaboration at centre of mass energies near the Z peak are analysed. Small angular mismatches between the directions of the two muons are used to assess the effects of initial state photon radiation and initial-final-state radiation interference on the forward-backward asymmetry of muon pairs. The dependence of the asymmetry on the invariant mass of the pair is measured in a model-independent way. Effective vector and axial-vector couplings of the Z boson are determined and compared to the Standard Model expectations.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Ball A., Barberio E., Barlow R., Batley R., Behnke T., Bell K., Bella G., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2001)
Physics Letters B.
516,
3-4,
p. 236-248
Using about 3.9 million hadronic Z decays from e+e- collisions recorded by the OPAL detector at LEP at centre-of-mass energies √s ≈ MZ, the branching ratio for the decay Ds- → τ-ν̄τ has been measured to be BR(Ds- → τ-ν̄τ) = (7.0 ± 2.1 (stat) ± 2.0 (syst))%. This result can be used to derive the decay constant of the Ds- meson: fDs = (286 ± 44 (stat) ± 41 (syst)) MeV.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Ball A., Barberio E., Barlow R., Batley R., Behnke T., Bell K., Bella G., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2001)
European Physical Journal C.
21,
3,
p. 411-422
In hadronic decays of Z bosons recorded with the OPAL detector at LEP, events containing b quarks were selected using the long lifetime of b flavoured hadrons. Comparing the 3-jet rate in b events with that in d,u,s and c quark events, a significant difference was observed. Using script O sign(α2S) calculations for massive quarks, this difference was used to determine the b quark mass in the MS renormalisation scheme at the scale of the Z boson mass. By combining the results from seven different jet finders the running b quark mass was determined to be m̄b(mz) = (2.67 ± 0.03(stat.)+0.29-0.37(syst.)±0.19(theo.)) GeV. Evolving this value to the b quark mass scale itself yields m̄b(m̄b) = (3.95+0.52-0.6) GeV, consistent with results obtained at the b quark production threshold. This determination confirms the QCD expectation of a scale dependent quark mass. A constant mass is ruled out by 3.9 standard deviations.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Barberio E., Barlow R., Batley R., Behnke T., Bell K., Bell P., Bella G., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2001)
European Physical Journal C.
21,
3,
p. 399-410
The magnitude of the CKM matrix element |Vub| is determined by measuring the inclusive charmless semileptonic branching fraction of beauty hadrons at OPAL based on b → Xuℓv event topology and kinematics. This analysis uses OPAL data collected between 1991 and 1995, which correspond to about four million hadronic Z decays. We 1easure Br(b → Xuℓv) to be (1.63 ± 0.53 +0.55-0.62) × 10-3. The first uncertainty is the statistical error and the second is the systematic error. From this analysis, |Vub| is determined to be: |Vub| = (4.00 ± 0.65(stat)+0.67-0.76(sys) ± 0.19(HQE)) × 10-3. The last error represents the theoretical uncertainties related to the extraction of |Vub| from Br(b → Xuℓv) using the Heavy Quark Expansion.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Ball A., Barberio E., Barlow R., Batley R., Behnke T., Bell K., Bella G., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2001)
European Physical Journal C.
21,
1,
p. 1-21
Measurements of the τ lepton polarization and forward-backward polarization asymmetry near the Z0 resonance using the OPAL detector are described. The measurements are based on analyses of τ → eνeντ, τ → μνμντ, τ → πντ, τ → ρντ, and τ → a1ντ decays from a sample of 144,810 e+e- → τ+τ- candidates corresponding to an integrated luminosity of 151 pb-1. Assuming that the τ lepton decays according to V-A theory, we measure the average τ polarization near √s = Mz to be 〈Pτ〉 = (-14.10 ± 0.73 ± 0.55)% and the τ polarization forward-backward asymmetry to be AFBpol = (-10.55 ± 0.76 ± 0.25)%, where the first error is statistical and the second systematic. Taking into account the small effects of the photon propagator, photon-Z0 interference and photonic radiative corrections, these results can be expressed in terms of the lepton neutral current asymmetry parameters: Aτ = 0.1456 ± 0.0076 ± 0.0057, Ae = 0.1454 ± 0.0108 ± 0.0036. These measurements are consistent with the hypothesis of lepton universality and combine to give Aℓ = 0.1455±0.0073. Within the context of the Standard Model this combined result corresponds to = 0.23172± 0.00092. Combing these results with those from the other OPAL neutral current measurements yields a value of = 0.23211 ± 0.00068.
Abbiendi G., Ackerstaff K., Ainsley C., Akesson P., Alexander G., Allison J., Anderson K., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Bailey I., Ball A., Barberio E., Barlow R., Baumann S., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2001)
Physics Letters B.
507,
1-4,
p. 29-46
The mass and width of the W boson are determined in e+e- collisions at LEP using 183 pb-1 of data recorded at a centre-of-mass energy √s = 189 GeV with the OPAL detector. The invariant mass distributions from 970 W+W- → qqqq and 1118 W+W- → qqℓνℓ candidate events are used to measure the mass of the W boson, MW = 80.451±0.076 (stat.) ± 0.049 (syst.) GeV. A direct measurement of the width of the W boson gives ΓW = 2.09 ± 0.18 (stat.) ± 0.09 (syst.) GeV. The results are combined with previous OPAL results from 78 pb-1 of data recorded with √s from 161 to 183 GeV, to obtain: MW = 80.432 ± 0.066 (stat.) ± 0.045 (syst.) GeV, ΓW = 2.04 ± 0.16 (stat.) ± 0.09 (syst.) GeV. The consistency of the direct measurement of Mw with that inferred from other measurements of electroweak parameters provides an important test of the Standard Model of electroweak interactions.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Ball H., Barberio E., Barlow R., Batley R., Behnke T., Bell K., Bella G., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2001)
European Physical Journal C.
20,
4,
p. 601-615
Using data from e+e- annihilation into hadrons, taken with the OPAL detector at LEP at the Z pole between 1991 and 1995, we performed a simultaneous measurement of the colour factors of the underlying gauge group of the strong interaction, CF and CA, and the strong coupling, αs. The measurement was carried out by fitting next-to-leading order perturbative predictions to measured angular correlations of 4-jet events together with multi-jet related variables. Our results, CA = 3.02 ± 0.25(stat.) ± 0.49(syst.), CF = 1.34 ± 0.13(stat.) ± 0.22(syst.), αs(MZ) = 0.120 ± 0.011(stat.) ± 0.020(syst.), provide a test of perturbative QCD in which the only assumptions are non-abelian gauge symmetry and standard hadronization models. The measurements are in agreement with SU(3) expectations for CF and CA and the world average of αs(Mz).
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Ball A., Barberio E., Barlow R., Batley R., Behnke T., Bell K., Bella G., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2001)
European Physical Journal C.
20,
3,
p. 445-454
A sample of 3.73 million hadronic Z decays, recorded with the OPAL detector at LEP in the years 1991-95, has been used to search for a narrow resonance corresponding to the decay of the D*/± (2629) meson into D*±π+π-. The D*+ mesons are reconstructed in the decay channel D*+ → D0π+ with D0 → K-π+. No evidence for a narrow D*/± (2629) resonance is found. A limit on the production of narrow D*/± (2629) in hadronic Z decays is derived: f(Z → D*/± (2629)) × Br(D*/+ → D*+π+π-) < 3.1 × 10-3(95%C.L.).
Cohen I. R., Gross E., Lellouch D., Levinson L., Abbiendi G., Ackerstaff K., Ainsley C., Akesson P., Alexander G., Allison J., Anderson K., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Bailey I., Ball A., Barberio E., Barlow R., Batley J., Baumann S., Behnke T., Duchovni E. & Mikenberg G.
(2001)
Physics Letters B.
501,
1-2,
p. 12-27
Searches for final states expected in models with light gravitinos have been performed, including experimental topologies with multi-leptons with missing energy, leptons and photons with missing energy, and jets and photons with missing energy. No excess over the expectations from the Standard Model has been observed. Limits are placed on production cross-sections in the different experimental topologies. Additionally, combining with searches for the anomalous production of lepton and photon pairs with missing energy, results are interpreted in the context of minimal models of gauge mediated SUSY breaking. Exclusion limits at the 95% confidence level on the supersymmetric particle masses of mℓ̃ > 83 GeV and mX̃10 > 85 GeV for tan β = 2, and mτ̃ > 69 GeV, mẽ,μ̃ > 88 GeV and mX̃10 > 76 GeV for tan β = 20, are established.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Ball A., Barberio E., Barlow R., Batley R., Behnke T., Bell K., Bella G., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2001)
Physics Letters B.
499,
1-2,
p. 38-52
A search for the Standard Model Higgs boson has been performed with the OPAL detector at LEP based on the full data sample collected at √s ≈ 192-209 GeV in 1999 and 2000, corresponding to an integrated luminosity of approximately 426 pb-1. The data are examined for their consistency with the background-only hypothesis and various Higgs boson mass hypotheses. A lower bound of 109.7 GeV is obtained on the Higgs boson mass at the 95% confidence level. At higher masses, the data are consistent with both the background and the signal-plus-background hypotheses.
Abbiendi G., Ackerstaff K., Ainsley C., Akesson P., Alexander G., Allison J., Anderson K., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Bailey I., Ball A., Barberio E., Barlow R., Baumann S., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2001)
European Physical Journal C.
18,
3,
p. 425-445
Searches for the neutral Higgs bosons h0 and A0 are used to obtain limits on the Type II Two Higgs Doublet Model (2HDM(II)) with no CP-violation in the Higgs sector and no additional particles besides the five Higgs bosons. The analysis combines approximately 170 pb-1 of data collected with the OPAL detector at √s ≈ 189 GeV with previous runs at √s ≈ mz and √s ≈ 183 GeV. The searches are sensitive to the h0, A0 → qq̄, gg, τ+τ- and h0 → A0 A0 decay modes of the Higgs bosons. For the first time, the 2HDM(II) parameter space is explored in a detailed scan, and new flavour independent analyses are applied to examine regions in which the neutral Higgs bosons decay predominantly into light quarks or gluons. Model-independent limits are also given.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Anagnostou G., Anderson K., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Bailey I., Ball A., Barberio E., Barlow R., Behnke T., Bell K., Bella G., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2001)
European Physical Journal C.
19,
4,
p. 587-651
This final analysis of hadronic and leptonic cross-sections and of leptonic forward-backward asymmetries in e+e- collisions with the OPAL detector makes use of the full LEP 1 data sample comprising 161pb-1 of integrated luminosity and 4.5 × 106 selected Z decays. An interpretation of the data in terms of contributions from pure Z exchange and from γ/Z interference allows the parameters of the Z resonance to be determined in a model-independent way. Our results are in good agreement with lepton universality and consistent with the vector and axial-vector couplings predicted in the Standard Model. A fit to the complete dataset yields the fundamental Z resonance parameters: mz = (91.1852 ± 0.0030) GeV, Γz = (2.4948 ± 0.0041) GeV, σ0h = (41.501 ± 0.055) nb, Rℓ = 20.823 ± 0.044, and A0,ℓFB = 0.0145 ± 0.0017. Transforming these parameters gives a measurement of the ratio between the decay width into invisible particles and the width to a single species of charged lepton, Γinv/Γℓℓ = 5.942 ± 0.027. Attributing the entire invisible width to neutrino decays and assuming the Standard Model couplings for neutrinos, this translates into a measurement of the effective number of light neutrino species, Nv = 2.984 ± 0.013. Interpreting the data within the context of the Standard Model allows the mass of the top quark, mt = (162+29-16) GeV, to be determined through its influence on radiative corrections. Alternatively, utilising the direct external measurement of mt as an additional constraint leads to a measurement of the strong coupling constant and the mass of the Higgs boson: αs(mz) = 0.127 ± 0.005 and mH = (390+750-280)GeV.
Abbiendi G., Ackerstaff K., Ainsley C., Akesson P., Alexander G., Allison J., Anderson K., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Bailey I., Ball A., Barberio E., Barlow R., Baumann S., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2001)
European Physical Journal C.
19,
1,
p. 1-14
A measurement of triple gauge boson couplings is presented, based on W-pair data recorded by the OPAL detector at LEP during 1998 at a centre-of-mass energy of 189 GeV with an integrated luminosity of 183 pb-1. After combining with our previous measurements at centre-of-mass energies of 161-183 GeV we obtain κ = 0.97+0.20-0.16, gz1 = 0.991+0.060-0.057 and λ = -0.110+0.058-0.055, where the errors include both statistical and systematic uncertainties and each coupling is determined by setting the other two couplings to their Standard Model values. These results are consistent with the Standard Model expectations.
Abbiendi G., Ackerstaff K., Ainsley C., Akesson P., Alexander G., Allison J., Anderson K., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Bailey I., Ball A., Barberio E., Barlow R., Baumann S., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2001)
European Physical Journal C.
18,
3,
p. 447-460
The rates are measured per hadronic Z0 decay for gluon splitting to bb̄ quark pairs, gbb̄, and of events containing two bb̄ quark pairs, g4b, using a sample of four-jet events selected from data collected with the OPAL detector. Events with an enhanced signal of gluon splitting to bb̄ quarks are selected if two of the jets are close in phase-space and contain detached secondary vertices. For the event sample containing two bb̄ quark pairs, three of the four jets are required to have a significantly detached secondary vertex. Information from the event topology is combined in a likelihood fit to extract the values of gbb̄ and g4b, namely gbb̄ = (3.07 ± 0.53(stat) ± 0.97(syst)) × 10-3, g4b = (0.36 ± 0.17(stat) ± 0.27(syst)) × 10-3.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Ball A., Barberio E., Barlow R., Behnke T., Bell K., Bella G., Bellerive A., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2001)
European Physical Journal C.
19,
2,
p. 241-256
From data collected around the Z resonance by the OPAL detector at LEP, a sample of B0s decays was obtained using D-s ℓ+ combinations, where the D-s was fully reconstructed in the φπ-, K*0K- and K0sK- decay channels or partially reconstructed in the φℓ-v̄(X) decay channel. These events were used to study B0s oscillation. The flavor (b or b̄) at decay was determined from the lepton charge while the flavor at production was determined from a combination of techniques. The expected sensitivity of the experiment is 4.1 ps-1. The experiment was not able to resolve the oscillatory behavior, and we deduced that the B0s oscillation frequency Δms > 1.0 ps-1 at the 95% confidence level.
Abbiendi G., Ainsley C., Akesson P., Alexander G., Allison J., Anagnostou G., Anderson K., Arcelli S., Asai S., Axen D., Azuelos G., Bailey I., Ball A., Barberio E., Barlow R., Behnke T., Bell K., Bella G., Bellerive A., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2001)
European Physical Journal C.
19,
2,
p. 257-268
About 4.4 million hadronic decays of Z bosons, recorded by the OPAL detector at LEP at a centre-of-mass energy of around √s = 91.2 GeV, are used to determine the mean charged particle multiplicities for the three light quark flavours. Events from primary u, d, and s quarks are tagged by selecting characteristic particles which carry a large fraction of the beam energy. The charged particle multiplicities are measured in the hemispheres opposite to these particles. An unfolding procedure is applied to obtain these multiplicities for each primary light quark flavour. This yields 〈nu〉 = 17.77 ± 0.51 +0.86-1.20, 〈nd〉 = 21.44 ± 0.63 +1.46-1.17, 〈ns〉 = 20.02 ± 0.13 +0.39-0.37, where statistical arid systematic errors are given. The results for 〈nu〉 and 〈nd〉 are almost fully statistically anti-correlated. Within the errors the result is consistent with the flavour independence of the strong interaction for the particle multiplicities in events from the light up, down, and strange quarks.
Abbiendi G., Ackerstaff K., Ainsley C., Akesson P., Alexander G., Allison J., Anderson K., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Bailey I., Ball A., Barberio E., Barlow R., Baumann S., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2001)
European Physical Journal C.
19,
2,
p. 229-240
Measurements are presented of the polarisation of W+W- boson pairs produced in e+e- collisions, and of CP-violating WWZ and WWγ trilinear gauge couplings. The data were recorded by the OPAL experiment at LEP during 1998, where a total integrated luminosity of 183 pb-1 was obtained at a centre-of-mass energy of 189 GeV. The measurements are performed through a spin density matrix analysis of the W boson decay products. The fraction of W bosons produced with longitudinal polarisation was found to be σL/σtotal = (21.0 ± 3.3 ± 1.6)% where the first error is statistical and the second systematic The joint W boson pair production fractions were found to be σTT/σtotal = (78.1 ± 9.0 ± 3.2)%, σLL/σtotal = (20.1 ± 7.2 ± 1.8)% and σTL/σtotal = (1.8 ± 14.7 ± 3.8)%. In the CP-violating trilinear gauge coupling sector we find κ̃z = -0.20+0.10-0.07, gz4= -0.02+0.32-0.33 and λ̃z = -0.18+0.24-0.16, where errors include both statistical and systematic uncertainties. In each case the coupling is determined with all other couplings set to their Standard Model values except those related to the measured coupling via SU(2)L × U(1)Y symmetry. These results are consistent with Standard Model expectations.
Abbiendi G., Ackerstaff K., Ainsley C., Akesson P., Alexander G., Allison J., Anderson K., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Bailey I., Ball A., Barberio E., Barlow R., Baumann S., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2001)
European Physical Journal C.
19,
4,
p. 653-665
From an analysis of the ionisation energy loss of charged particles selected from 110326 e(+)e(-) --> tau (+)tau (-) candidates recorded by the OPAL detector at e(+)e(-) centre-of-mass energies near the Z(0) resonance, we determine the one-prong tan decay branching ratios: Br(tau (-) --> nu (tau)K(-) greater than or equal to 0h(0)) = (1.528 +/- 0.039 +/- 0.040)% Br(tau (-) --> nu (tau)K(-)) = (0.658 +/- 0.027 +/-0.029)% where the h(0) notation refers to a pi (0), an eta, a K(S)(0), or a K(L)(0), and where the first uncertainty is statistical and the second is systematic.
Cohen I. R., Gross E., Lellouch D., Levinson L., Abbiendi G., Ackerstaff K., Ainsley C., Akesson P., Alexander G., Allison J., Anderson K., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Bailey I., Ball A., Barberio E., Barlow R., Baumann S., Behnke T., Bell K., Duchovni E. & Mikenberg G.
(2000)
Physics Letters B.
493,
3-4,
p. 266-280
The lifetime and oscillation frequency of the B0 meson has been measured using B̄0 → D*+l-ν̄ decays recorded on the Z0 peak with the OPAL detector at LEP. The D*+ → D0π+ decays were reconstructed using an inclusive technique and the production flavour of the B0 mesons was determined using a combination of tags from the rest of the event. The results τ(B0) = 1.541 ± 0.028 ± 0.023 ps, Δm(d) = 0.497 ± 0.024 ± 0.025 ps-1 were obtained, where in each case the first error is statistical and the second is systematic. (C) 2000 Elsevier Science B.V.
Abbiendi G., Ackerstaff K., Ainsley C., Akesson P., Alexander G., Allison J., Anderson K., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Bailey I., Ball A., Barberio E., Barlow R., Baumann S., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2000)
Physics Letters B.
493,
3-4,
p. 249-265
From a data sample of 183 pb-1 recorded at a center-of-mass energy of √s = 189 GeV with the OPAL detector at LEP, 3068 W-pair candidate events are selected. Assuming Standard Model W boson decay branching fractions, the W-pair production cross section is measured to be δww = 16.30 ± 0.34(stat.) ± 0.18(syst.) pb. When combined with previous OPAL measurements, the W boson branching fraction to hadrons is determined to be 68.32 ±0.61(stat.) ±0.28(syst.)% assuming lepton universality. These results are consistent with Standard Model expectations. (C) 2000 Published by Elsevier Science B.V.
Abbiendi G., Ackerstaff K., Ainsley C., Akesson P. F., Alexander G., Allison J., Anderson K. J., Arcelli S., Asai S., Ashby S. F., Axen D., Azuelos G., Bailey I., Ball A. H., Barberio E., Barlow R. J., Batley J. R., Baumann S., Behnke T., Bell K. W., Bella G., Bellerive A., Bentvelsen S., Bethke S., Biebel O., Bloodworth I. J., Bock P., Böhme J., Boeriu O., Bonacorsi D., Boutemeur M., Braibant S., Bright-Thomas P., Brigliadori L., Brown R. M., Burckhart H. J., Cammin J., Capiluppi P., Carnegie R. K., Carter A. A., Carter J. R., Chang C. Y., Charlton D. G., Ciocca C., Clarke P. E., Clay E., Cohen I., Cooke O. C., Couchman J., Couyoumtzelis C., Coxe R. L., Cuffiani M., Dado S., Dallavalle G. M., Dallison S., Davis R., De Roeck A., Dervan P., Desch K., Dienes B., Dixit M. S., Donkers M., Dubbert J., Duchovni E., Duckeck G., Duerdoth I. P., Estabrooks P. G., Etzion E., Fabbri F., Fanti M., Faust A. A., Feld L., Ferrari P., Fiedler F., Fleck I., Ford M., Frey A., Fürtjes A., Futyan D. I., Gagnon P., Gary J. W., Gaycken G., Geich-Gimbel C., Giacomelli G., Giacomelli P., Gingrich D. M., Glenzinski D., Goldberg J., Grandi C., Graham K., Gross E., Grunhaus J., Gruwé M., Günther P. O., Hajdu C., Hanson G. G., Hansroul M. & Hapke M.
(2000)
Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics.
492,
1-2,
p. 8-12
A search for direct production of C-even resonances a2(1320) and f2(1270) in e+e- annihilation was performed with SND detector at VEPP-2M e+e- collider. The upper limits of electronic widths of these mesons were obtained at 90% confidence level: Γ(a2(1320) → e+e-) < 0.56 eV, Γ(f2(1270) → e+e-) < 0.11 eV. (C) 2000 Published by Elsevier Science B.V.
Abbiendi G., Ackerstaff K., Ainsley C., Akesson P., Alexander G., Allison J., Anderson K., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Bailey I., Ball A., Barberio E., Barlow R., Batley J., Baumann S., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2000)
Physics Letters B.
492,
1-2,
p. 23-31
We measure the mass of the τ to be 1775.1 ± 1.6(m(cn/stat.)) ± 1.0(m(cn/sys.)) MeV using τ from Z0 decays. To test CPT invariance we compare the masses of the positively and negatively charged τ. The relative mass difference is found to be smaller than 3.0 × 10-3 at the 90% confidence level.
Abbiendi G., Ackerstaff K., Ainsley C., Akesson P., Alexander G., Allison J., Anderson K., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Bailey I., Ball A., Barberio E., Barlow R., Baumann S., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2000)
Physics Letters B.
492,
1-2,
p. 13-22
The inclusive branching fraction of φ mesons from the decay of b hadrons produced in Z decays was measured to be Br(b → φX) = 0.0282 ± 0.0013 (stat.) ± 0.0019 (syst.), using data collected by the OPAL detector at LEP. (C) 2000 Elsevier Science B.V.
Abbiendi G., Ackerstaff K., Ainsley C., Akesson P., Alexander G., Allison J., Anderson K., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Bailey I., Ball A., Barberio E., Barlow R., Baumann S., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2000)
Physics Letters B.
490,
1-2,
p. 71-86
Using data recorded at centre-of-mass energies around 183 and 189 GeV with the OPAL detector at LEP, the fundamental coupling of the charm quark to the W boson has been studied. The ratio R(c)(W) ≡ Γ (W → cX)/Γ (W → hadrons) has been measured from jet properties, lifetime information, and leptons produced in charm decays. A value compatible with the Standard Model expectation of 0.5 is obtained: R(c)(W) = 0.481 ± 0.042 (stat.) ± 0.032 (syst.). By combining this result with measurements of the W boson total width and hadronic branching ratio, the magnitude of the CKM matrix element |V(cs)| is determined to be |V(cs)| = 0.969 ± 0.058. (C) 2000 Elsevier Science B.V.
Abbiendi G., Ackerstaff K., Akesson P., Alexander G., Allison J., Anderson K., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Bailey I., Ball A., Barberio E., Barlow R., Batley J., Baumann S., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2000)
European Physical Journal C.
16,
3,
p. 407-421
The energy distribution and type of the particle with the highest momentum in quark jets are determined for each of the five quark flavours making only minimal model assumptions. The analysis is based on a large statistics sample of hadronic Z0 decays collected with the OPAL detector at the LEP e+e- collider. These results provide a basis for future studies of light flavour production at other centre-of-mass energies. We use our results to study the hadronisation mechanism in light flavour jets and compare the data to the QCD models JETSET and HERWIG. Within the JETSET model we also directly determine the suppression of strange quarks to be γs = 0.422 ± 0.049(stat.) ± 0.059(syst.) by comparing the production of charged and neutral kaons in strange and non-strange light quark events. Finally we study the features of baryon production.
Abbiendi G., Ackerstaff K., Akesson P., Alexander G., Allison J., Anderson K., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Bailey I., Ball A., Barberio E., Barlow R., Batley J., Baumann S., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2000)
Physics Letters B.
482,
1-3,
p. 15-30
The magnitude of the Cabibbo-Kobayashi-Maskawa matrix element V(cb) has been measured using B̄0 → D*+l-ν̄ decays recorded on the Z0 peak using the OPAL detector at LEP. The D*+ → D0π+ decays were reconstructed both in the particular decay modes D0 → K-π+ and D0 → K-π+π0 and via an inclusive technique. The product of |V(cb)| and the decay form factor of the B̄0 → D*+l-ν̄ transition at zero recoil F(1) was measured to be F(1)|V(cb)| = (37.1 ± 1.0 ± 2.0) x 10-3, where the uncertainties are statistical and systematic respectively. By using Heavy Quark Effective Theory calculations for F(1), a value of |V(cb)| = (40.7 ± 1.1 ± 2.2 ± 1.6) x 10-3 was obtained, where the third error is due to theoretical uncertainties in the value of F(1). The branching ratio Br(B̄0 → D*+l-ν̄) was also measured to be (5.26 ± 0.20 ± 0.46)%. (C) 2000 Published by Elsevier Science B.V.
Abbiendi G., Ackerstaff K., Akesson P., Alexander G., Allison J., Anderson K., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Bailey I., Ball A., Barberio E., Barlow R., Batley J., Baumann S., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2000)
Physics Letters B.
476,
3-4,
p. 256-272
A study of Z boson pair production in e+e- annihilation at center-of-mass energies near 183 GeV and 189 GeV is reported. Final states containing only leptons, (l+l-l+l- and l+l-vv̄), quark and lepton pairs, (qq̄l+l-, qq̄vv̄) and the all-hadronic final state (qq̄qq̄) are considered. In all states with at least one Z boson decaying hadronically, qq̄ and bb̄ final states are considered separately using lifetime and event-shape tags, thereby improving the cross-section measurement. At √s = 189 GeV the Z-pair cross section was measured to be 0.80-0.13/+0.14(stat.)-0.05/+0.06 (syst.) pb, consistent with the Standard Model prediction. At √s = 183 GeV the 95% C.L. upper limit is 0.55 pb. Limits on anomalous ZZγ and ZZZ couplings are derived. (C) 2000 Published by Elsevier Science B.V.
Abbiendi G., Ackerstaff K., Akesson P., Alexander G., Allison J., Anderson K., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Bailey I., Ball A., Barberio E., Barlow R., Batley J., Baumann S., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2000)
Physics Letters B.
476,
3-4,
p. 233-242
A search for the decay B(±) → K(±)K(±)π(±) was performed using data collected by the OPAL detector at LEP. These decays are strongly suppressed in the Standard Model but could occur with a higher branching ratio in supersymmetric models, especially in those with R-Parity violating couplings. No evidence for a signal was observed and a 90% confidence level upper limit of 1.29 x 10-4 was set for the branching ratio. (C) 2000 Published by Elsevier Science B.V.
Abbiendi G., Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K. J., Anderson S., Arcelli S., Asai S., Ashby S. F., Axen D., Azuelos G., Ball A. H., Barberio E., Barlow R. J., Batley J. R., Baumann S., Bechtluft J., Behnke T., Bell K. W., Bella G., Bellerive A., Bentvelsen S., Bethke S., Betts S., Biebel O., Biguzzi A., Bloodworth I. J., Bock P., Böhme J., Bonacorsi D., Boutemeur M., Braibant S., Bright-Thomas P., Brigliadori L., Brown R. M., Burckhart H. J., Capiluppi P., Carnegie R. K., Carter A. A., Carter J. R., Chang C. Y., Ciocca C., Clarke P. E., Clay E., Cohen I., Conboy J. E., Cooke O. C., Couchman J., Couyoumtzelis C., Coxe R. L., Cuffiani M., Dado S., Dallavalle G. M., Davis R., de Jong S., de Roeck A., Dervan P., Desch K., Dienes B., Dixit M. S., Dubbert J., Duchovni E., Duckeck G., Duerdoth I. P., Estabrooks P. G., Etzion E., Fabbri F., Fanfani A., Fanti M., Faust A. A., Fiedler F., Fierro M., Fleck I., Frey A., Fürtjes A., Futyan D. I., Gagnon P., Gary J. W., Gascon-Shotkin S. M., Gaycken G., Geich-Gimbel C., Giacomelli G., Giacomelli P., Gibson V., Gibson W. R., Gingrich D. M., Glenzinski D., Goldberg J., Gorn W., Grandi C., Graham K., Gross E., Grunhaus J., Gruwé M., Hansroul M., Hapke M., Harder K., Harel A., Hargrove C. K., Harin-Dirac M., Hauschild M., Hawkes C. M., Hawkings R., Hemingway R. J., Herndon M., Herten G., Heuer R. D., Hildreth M. D., Hill J. C., Hobson P. R., Hocker A., Hoffman K., Homer R. J., Honma A. K., Horváth D., Hossain K. R., Howard R., Hüntemeyer P., Igo-Kemenes P., Imrie D. C., Ishii K., Jacob F. R., Jawahery A., Jeremie H., Jimack M., Jones C. R., Jovanovic P., Junk T. R., Kanaya N., Kanzaki J., Karlen D., Kartvelishvili V., Kawagoe K., Kawamoto T., Kayal P. I., Keeler R. K., Kellogg R. G., Kennedy B. W., Kim D. H., Klier A., Kobayashi T., Kobel M., Kokott T. P., Kolrep M., Komamiya S., Kowalewski R. V., Kress T., Krieger P., von Krogh J., Kuhl T., Kyberd P., Lafferty G. D., Landsman H., Lanske D., Lauber J., Lawson I., Layter J. G., Lellouch D., Letts J., Levinson L., Liebisch R., List B., Littlewood C., Lloyd A. W., Lloyd S. L., Loebinger F. K., Long G. D., Losty M. J., Lu J., Ludwig J., Liu D., Macchiolo A., Macpherson A., Mader W., Mannelli M., Marcellini S., Martin A. J., Martin J. P., Martinez G., Mashimo T., Mättig P., McDonald W. J., McKenna J., Mckigney E. A., McMahon T. J., McPherson R. A., Meijers F., Mendez-Lorenzo P., Merritt F. S., Mes H., Michelini A., Mihara S., Mikenberg G., Miller D. J., Mohr W., Montanari A., Mori T., Nagai K., Nakamura I., Neal H. A., Nisius R., O'Neale S. W., Oakham F. G., Odorici F., Ogren H. O., Okpara A., Oreglia M. J., Orito S., Pásztor G., Pater J. R., Patrick G. N., Patt J., Perez-Ochoa R., Petzold S., Pfeifenschneider P., Pilcher J. E., Pinfold J., Plane D. E., Poffenberger P., Poli B., Polok J., Przybycień M., Quadt A., Rembser C., Rick H., Robertson S., Robins S. A., Rodning N., Roney J. M., Rosati S., Roscoe K., Rossi A. M., Rozen Y., Runge K., Runolfsson O., Rust D. R., Sachs K., Saeki T., Sahr O., Sang W. M., Sarkisyan E. K., Sbarra C., Schaile A. D., Schaile O., Scharff-Hansen P., Schieck J., Schmitt S., Schöning A., Schröder M., Schumacher M., Schwick C., Scott W. G., Seuster R., Shears T. G., Shen B. C., Shepherd-Themistocleous C. H., Sherwood P., Siroli G. P., Sittler A., Skuja A., Smith A. M., Snow G. A., Sobie R., Söldner-Rembold S., Spagnolo S., Sproston M., Stahl A., Stephens K., Steuerer J., Stoll K., Strom D., Ströhmer R., Surrow B., Talbot S. D., Taras P., Tarem S., Teuscher R., Thiergen M., Thomas J., Thomson M. A., Torrence E., Towers S., Trigger I., Trócsányi Z., Tsur E., Turner-Watson M. F., Ueda I., Van Kooten R., Vannerem P., Verzocchi M., Voss H., Wäckerle F., Wagner A., Ward C. P., Ward D. R., Watkins P. M., Watson A. T., Watson N. K., Wells P. S., Wermes N., Wilson G. W., Wilson J. A., Wyatt T. R., Yamashita S., Zacek V. & Zer-Zion D.
(2000)
European Physical Journal C.
12,
1,
p. 1-24
A search for pair produced scalar fermions with couplings that violate R-parity has been performed using a data sample corresponding to an integrated luminosity of 56 pb-1 at a centre-of-mass energy of √s = 183 GeV collected with the OPAL detector at LEP. An important consequence of R-parity breaking interactions is that the lightest supersymmetric particle is expected to be unstable. Searches for R-parity violating decays of charged sleptons, sneutrinos and stop quarks have been performed under the assumptions that the lightest supersymmetric particle decays promptly and that only one of the R-parity violating couplings is dominant for each of the decay modes considered. Such processes would yield multileptons, jets plus leptons or multi-jets, with or without missing energy, in the final state. No significant excess of such events has been observed. Limits on the production cross-sections of scalar fermions in R-parity violating scenarios are obtained. Mass exclusion regions are also presented in the framework of the Constrained Minimal Supersymmetric Standard Model.
Abbiendi G., Ackerstaff K., Akesson P., Alexander G., Allison J., Anderson K., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Bailey I., Ball A., Barberio E., Barillari T., Barlow R., Batley J., Baumann S., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2000)
European Physical Journal C.
16,
4,
p. 579-596
The inclusive production of D*± mesons in photon-photon collisions has been measured using the OPAL detector at LEP at e+e- centre-of-mass energies √see of 183 and 189 GeV. The D*+ mesons are reconstructed in their decay to D0π+ with the D0 observed in the two decay modes K-π+ and K-π+π-π+. After background subtraction, 100.4 ± 12.6 (stat) D*± mesons have been selected in events without observed scattered beam electron ("anti-tagged") and 29.8 ± 5.9 (stat)D*± mesons in events where one beam electron is scattered into the detector ("single-tagged"). Direct and single-resolved events are studied separately. Differential cross-sections dσ/dpD*T and dσ/d|ηD*| as functions of the D*± transverse momentum pD*T and pseudorapidity ηD* are presented in the kinematic region 2 GeV < pD*T < 12 GeV and |ηD*| < 1.5. They are compared to next-to-leading order (NLO) perturbative QCD calculations. The total cross-section for the process e+e- → e+e- cc̄ where the charm quarks are produced in the collision of two quasi-real photons is measured to be σ(e+e- → e+e- cc̄) = 963 ± 110 (stat) ± 86 (sys) ± 224 (extrapolation) pb. A first measurement of the charm structure function Fγ2,c of the photon is performed in the kinematic range 0.0014 < cursive Greek chi < 0.87 and 5 GeV2 < Q2 < 100 GeV2, and the result is compared to a NLO perturbative QCD calculation.
Abbiendi G., Ackerstaff K., Akesson P., Alexander G., Allison J., Anderson K., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Bailey I., Ball A., Barberio E., Barlow R., Batley J., Baumann S., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2000)
European Physical Journal C.
13,
3,
p. 213-223
The branching ratio of the τ lepton to a neutral kaon meson is measured from a sample of approximately 200,000 τ decays recorded by the OPAL detector at centre-of-mass energies near the Z° resonance. The measurement is based on two samples which identify one-prong τ decays with KL0 and KS0 mesons. The combined branching ratios are measured to be B(τ- → π-K̄0ντ) = (9.33 ± 0.68 ± 0.49) × 10-3, B(τ- → π-K̄0[≥ 1π0]ντ) = (3.24 ± 0.74 ± 0.66) × 10-3, B(τ- → K-K0[≥ 0π0]ντ) = (3.30 ± 0.55 ± 0.39) × 10-3, where the first error is statistical and the second systematic.
Gross E., Lellouch D., Levinson L., Abbiendi G., Ackerstaff K., Ainsley C., Akesson P., Alexander G., Allison J., Anderson K., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Bailey I., Ball A., Barberio E., Barlow R., Batley J., Baumann S., Behnke T., Duchovni E. & Mikenberg G.
(2000)
European Physical Journal C.
18,
2,
p. 253-272
Photonic events with large missing energy have been observed in e+e- collisions at a centre-of-mass energy of 189 GeV using the OPAL detector at LEP. Results are presented for event topologies consistent with a single photon or with an acoplanar photon pair. Cross-section measurements are performed within the kinematic acceptance of each selection, and the number of light neutrino species is measured. Cross-section results are compared with the expectations from the Standard Model process e+e- → vv̄ + photon(s). No evidence is observed for new physics contributions to these final states. Upper limits on σ(e+e- → XY) · BR(X → Yγ) and σ(e+e- → XX) · BR2(X → Yγ) are derived for the case of stable and invisible Y. These limits apply to single and pair production of excited neutrinos (X = v*, Y = v), to neutralino production (X = χ̃02, Y = χ̃01) and to supersymmetric models in which X = χ̃01 and Y = G̃ is a light gravitino. The case of macroscopic decay lengths of particle X is considered for e+e- → XX, X → Yγ, when MY ≈ 0. The single-photon results are also used to place upper limits on superlight gravitino pair production as well as graviton-photon production in the context of theories with additional space dimensions.
Abbiendi G., Ackerstaff K., Ainsley C., Akesson P., Alexander G., Allison J., Anderson K., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Bailey I., Ball A., Barberio E., Barlow R., Batley J., Baumann S., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2000)
European Physical Journal C.
17,
4,
p. 553-566
The data recorded at a centre-of-mass energy of 189 GeV by the OPAL detector at LEP are used to search for trilinear couplings of the neutral gauge bosons in the process e+e- → Zγ. The cross-sections for multihadronic events with an energetic isolated photon, and for events with a high energy photon accompanied by missing energy are measured. These cross-sections and the photon energy, polar angle and isolation angle distributions are compared to the Standard Model predictions and to the theoretical expectations of a model allowing for ZγZ and Zγγ vertices. Since no significant deviations with respect to the Standard Model expectations are found, constraints are derived on the strength of neutral trilinear gauge couplings.
Abbiendi G., Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Batley J., Baumann S., Bechtluft J., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2000)
European Physical Journal C.
16,
1,
p. 61-70
The helicity density matrix elements ρ00 of ρ(770)± and w(782) mesons produced in Z0 decays have been measured using the OPAL detector at LEP. Over the measured meson energy range, the values are compatible with 1/3, corresponding to a statistical mix of helicity -1, 0 and +1 states. For the highest accessible scaled energy range 0.3 < xE < 0.6, the measured ρ00 values of the ρ± and the w are 0.373 ± 0.052 and 0.142 ± 0.114, respectively. These results are compared to measurements of other vector mesons.
Abbiendi G., Ackerstaff K., Akesson P., Alexander G., Allison J., Anderson K., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Bailey I., Ball A., Barberio E., Barlow R., Batley J., Baumann S., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2000)
European Physical Journal C.
16,
3,
p. 423-433
Bose-Einstein correlations in pairs of identical charged pions produced in a sample of 4.3 million Z(0) hadronic decays are studied as a function of the three components of the momentum difference, transverse ("out" and "side") and longitudinal with respect to the thrust direction of the event. A significant difference between the transverse. r(tside), and longitudinal, r(iota), dimensions is observed, indicating that the emitting source of identical pions, as observed in the Longitudinally CoMoving System, hs an elongated shape. This is observed with a variety of selection techniques. Specifically, the values of che parameters obtained by fitting the extended Goldhaber parametrisation to the correlation function C' = C-DATA/C-MC for two-jet events, selected with the Durham algorithm and resolution parameter y(cut) = 0.04, are r(tside) = (0.809 +/- 0.000 (stat)(-0.032)(+0.019) (syst)) fm, r(iota) = (0.989 +/- 0.011 (stat)(-0.015)(+0.030) (syst)) fm and r(iota)/r(tside) = 1.222 +/- 0.027 (stat)(-0.012)(+0.075) (syst). The results are discussed in the context of a recent model of Bose-Einstein correlations based on string fragmentation. The results of a unidimensional analysis are also presented.
Abbiendi G., Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Batley J., Baumann S., Bechtluft J., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2000)
European Physical Journal C.
13,
3,
p. 225-240
A measurement of inclusive semileptonic branching fractions of b hadrons produced in Z(0) decays is presented. An enriched Z(0) --> b (b) over bar sample is obtained with a lifetime flavour-tagging technique. The leptonic events are then selected from, this sample, and classified according to their origin, which is determined by comparing the distribution of several kinematic variables using artificial neural network techniques. Using 3.6 million multihadronic events collected with the OPAL detector at energies near the Z(0) resonance, the values BR(b --> lX) = (10.84 +/- 0.09 (stat.) +/- 0.21 (syst.) (+0.21)(-0.13) (model)) BR(b --> c --> lX) = (8.39 +/- 0.15 (stat.) +/- 0.22 (syst.) -(+0.33)(0.29) (model)). are measured, where b denotes all weakly decaying b hadrons and l represents either e or mu The second error includes all experimental systematic uncertainties whereas the last error is due to uncertainties in modelling of the lepton momentum spectrum in semileptonic decays and b quark fragmentation. The average fraction of the beam energy carrried by the weakly decaying b hadron, is measured to be = 0.709 +/- 0.003 (stat.) +/- 0.003 (syst.) +/- 0.013 (model) where the modelling error is dominated by the choice of b fragmentation model. The agreement between data and various semileptonic decay models and fragmentation functions is also investigated.
Abbiendi G., Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2000)
European Physical Journal C.
12,
4,
p. 551-565
A selection of di-lepton events with significant missing transverse momentum has been performed using a total data sample of 77.0 pb-1 at e+e- centre-of-mass energies of 161 GeV, 172 GeV and 183 GeV. The observed numbers of events: four at 161 GeV, nine at 173 GeV, and 78 at 183 GeV, are consistent with the numbers expected from Standard Model processes, which arise predominantly from W+W- production with each W decaying leptonically. This topology is an experimental signature also for the pair production of new particles that decay to a charged lepton accompanied by one or more invisible particles. Further event selection criteria are described that optimise the sensitivity to particular new physics channels. No evidence for new phenomena is apparent and limits on the production cross-section times branching ratio squared for various new physics processes are presented in a manner intended to minimise the number of model assumptions. Assuming a 100% branching ratio for the decay ℓ±R→ℓ±-0λ1, we exclude at 95%. CL: right-handed smuons with masses below 65 GeV for mμ̃ - m-0λ1 > 2 GeV and right-handed staus with masses below 64 GeV for m τ̃ - m-0λ1 > 10 GeV. Right-handed selectrons are excluded at 95% CL for masses below 77 GeV for mο̃ - m-0λ1 > 5 GeV within the framework of the Minimal Supersymmetric Standard Model assuming μ < -100 GeV and tan 3 = 1.5.
Abbiendi G., Ackerstaff K., Alexander G., Allison J., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Batley J., Baumann S., Bechtluft J., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2000)
European Physical Journal C.
13,
1,
p. 15-27
A search for pair-produced leptoquarks has been performed using a sample of e+e- collision events collected by the OPAL detector at LEP at e+e- centre-of-mass energies of about 183 GeV. The data sample corresponds to an integrated luminosity of 55.9 pb-1. The leptoquarks were assumed to be produced via couplings to the photon and the Z0 and then to decay within a single fermion generation. No evidence for contributions from leptoquark pair production processes was observed. Lower limits on scalar and vector leptoquark masses are obtained. The existing limits are improved in the region of large decay branching ratio to quark-neutrino.
Abbiendi G., Ackerstaff K., Alexander G., Allison J., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Batley J., Baumann S., Bechtluft J., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2000)
European Physical Journal C.
13,
1,
p. 1-13
The rate of secondary charm-quark-pair production has been measured in 4.4 million hadronic Z0 decays collected by OPAL. By selecting events with three jets and tagging charmed hadrons in the gluon jet candidate using leptons and D*+ mesons, the average number of secondary charm-quark pairs per hadronic event is found to be (3.20±0.21±0.38)x10-2.
Abbiendi G., Ackerstaff K., Alexander G., Allison J., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Batley J., Baumann S., Bechtluft J., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2000)
European Physical Journal C.
13,
3,
p. 197-212
From an analysis of the ionisation energy loss of charged particles selected from a sample of 147926 e+e-→τ+τ- candidates recorded in the OPAL detector at e+e- centre-of-mass energies near the Z° resonance, we determine the branching ratios: Br(τ- → ντ K-π-π+(π0)) = 0.343 ± 0.073 ± 0.031 % Br(τ- → ντK-π-K+(π 0)) = 0.159 ± 0.053 ± 0.020 %, where the (π0) notation refers to decay modes with or without an accompanying π0. The τ- → ντK-π-π+(π 0) final states occurring through τ- → ντK-KS0(π0) are treated as background in this analysis. We also examine the resonant structure of τ- → ντK-π-π+ candidates. Under the assumption that the resonant structure is dominated by the K1 resonances, we determine: R = Br(τ- → ντK1(1270))/Br(τ- → ντK1(1400)) + Br(τ- → ντK1(1270)) = 0.71 ± 0.16 ± 0.11. In all results, the first uncertainties are statistical and the second are systematic.
Abbiendi G., Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2000)
European Physical Journal C.
12,
4,
p. 609-626
The lifetimes of the B+ and B0 mesons, and their ratio, have been measured in the OPAL experiment using 2.4 million hadronic Z0 decays recorded at LEP. Z0 → bb̄ decays were tagged using displaced secondary vertices and high momentum electrons and muons. The lifetimes were then measured using well-reconstructed charged and neutral secondary vertices selected in this tagged data sample. The results are τΒ+ = 1.643 ± 0.037 ± 0.025 ps τΒ0 = 1.523 ± 0.057 ± 0.053 ps τΒ+/τΒ0 = 1.079 ± 0.064 ± 0.041, where in each case the first error is statistical and the second systematic. A larger data sample of 3.1 million hadronic Z0 decays has been used to search for CP and CPT violating effects by comparison of inclusive b and b hadron decays. No evidence for such effects is seen. The CP violation parameter Re(∈Β) is measured to be Re(∈Β) = 0.001 ± 0.014 ± 0.003 and the fractional difference between b and b̄ hadron lifetimes is measured to be (Δτ/τ)b ≡ τ(b hadron) - τ(b̄ hadron)/τ(average) = -0.001 ± 0.012 ± 0.008.
Abbiendi G., Ackerstaff K., Alexander G., Allison J., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Batley J., Baumann S., Bechtluft J., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2000)
European Physical Journal C.
14,
2,
p. 187-198
A search for charginos and neutralinos, predicted by supersymmetric theories, is performed using a data sample of 182.1 pb-1 taken at a centre-of-mass energy of 189 GeV with the OPAL detector at LEP. No evidence for chargino or neutralino production is found. Upper limits on chargino and neutralino pair production (X̃1+X̃1-, X̃10X̃20) cross-sections are obtained as a function of the chargino mass (mX̃1±), the lightest neutralino mass (mX̃10) and the second lightest neutralino mass (mX̃20). Within the Constrained Minimal Supersymmetric Standard Model framework, and for mX̃1± - mX̃10 ≥ 5 GeV, the 95% confidence level lower limits on mX̃1± are 93.6 GeV for tan β = 1.5 and 94.1 GeV for tan β = 35. These limits are obtained assuming a universal scalar mass m0 ≥ 500 GeV. The corresponding limits for all m0 are 78.0 and 71.7 GeV. The 95% confidence level lower limits on the lightest neutralino mass, valid for any value of tan β are 32.8 GeV for m0 ≥ 500 GeV and 31.6 GeV for all m0.
Abbiendi G., Ackerstaff K., Akesson P., Alexander G., Allison J., Anderson K., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Bailey I., Ball A., Barberio E., Barlow R., Batley J., Baumann S., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2000)
European Physical Journal C.
16,
2,
p. 185-210
We have studied hadronic events from e+e- annihilation data at centre-of-mass energies of √s =172, 183 and 189 GeV. The total integrated luminosity of the three samples, measured with the OPAL detector, corresponds to 250 pb-1. We present distributions of event shape variables, charged particle multiplicity and momentum, measured separately in the three data samples. From these we extract measurements of the strong coupling αs, the mean charged particle multiplicity 〈nch〉 and the peak position ξ0 in the ξp, = ln(1/xp) distribution. In general the data are described well by analytic QCD calculations and Monte Carlo models. Our measured values of αs, 〈nch〉 and ξ0 are consistent with previous determinations at √s=Mz0.
Abbiendi G., Ackerstaff K., Akesson P., Alexander G., Allison J., Anderson K., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Bailey I., Ball A., Barberio E., Barlow R., Batley J., Baumann S., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2000)
European Physical Journal C.
16,
1,
p. 41-60
The cross-section ratio Rb = σ(e+e- → bb̄)/σ(e+e- → qq̄) and the bottom and charm forward-backward asymmetries AbFB and AcFB are measured using event samples collected by the OPAL detector at centre-of-mass energies between 130 and 189 GeV. Events with bottom quark production are selected with a secondary vertex tag, and a hemisphere charge algorithm is used to extract AbFB. In addition, the bottom and charm asymmetries are measured using leptons from semileptonic decays of heavy hadrons and pions from D*+ → D0π+ decays. The results are in agreement with the Standard Model predictions.
Abbiendi G., Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barillari T., Barlow R., Batley J., Baumann S., Bechtluft J., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2000)
European Physical Journal C.
14,
2,
p. 199-212
The total hadronic cross-section σγγ(W) for the interaction of real photons, γγ → hadrons, is measured for γγ centre-of-mass energies 10 ≤ W ≤ 110 GeV. The cross-section is extracted from a measurement of the process e+e- → e+e- → e+- + hadrons, using a luminosity function for the photon flux together with form factors for extrapolating to real photons (Q2 = 0 GeV2). The data were taken with the OPAL detector at LEP at e+e- centre-of-mass energies √see = 161, 172 and 183 GeV. The cross-section σγγ(W) is compared with Regge factorisation and with the energy dependence observed in γp and pp interactions. The data are also compared to models which predict a faster rise of σγγ(W) compared to γp and pp interactions due to additional hard γγ interactions not present in hadronic collisions.
Abbiendi G., Ackerstaff K., Alexander G., Allison J., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Batley J., Baumann S., Bechtluft J., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2000)
European Physical Journal C.
13,
4,
p. 553-572
Cross-sections and angular distributions for hadronic and lepton pair final states in e+e- collisions at a centre-of-mass energy near 189 GeV, measured with the OPAL detector at LEP, are presented and compared with the predictions of the Standard Model. The results are used to measure the energy dependence of the electromagnetic coupling constant αem, and to place limits on new physics as described by four-fermion contact interactions or by the exchange of a new heavy particle such as a sneutrino in supersymmetric theories with R-parity violation. A search for the indirect effects of the gravitational interaction in extra dimensions on the μ+μ- and τ+τ- final states is also presented.
Cohen I. R., Gross E., Lellouch D., Abbiendi G., Ackerstaff K., Akesson P., Alexander G., Allison J., Anderson K., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Bailey I., Ball A., Barberio E., Barlow R., Batley J., Baumann S., Behnke T. & Bell K.
(2000)
European Physical Journal C.
14,
1,
p. 73-84
Searches for unstable neutral and charged heavy leptons, N and L±, and for excited states of neutral and charged leptons, v*, e*, μ*, and τ*, have been performed in e+e- collisions using data collected by the OPAL detector at LEP. The data analysed correspond to an integrated luminosity of about 58 pb-1 at a centre-of-mass energy of 183 GeV, and about 10 pb-1 each at 161 GeV and 172 GeV. No evidence for new particles was found. Lower limits on the masses of unstable heavy and excited leptons are derived. From the analysis of charged-current, neutral-current, and photonic decays of singly produced excited leptons. upper limits are determined for the ratio of the coupling to the compositeness scale, f/Λ, for masses up to the kinematic limit. For excited leptons, the limits are established independently of the relative values of the coupling constants f and f.
Abbiendi G., Ackerstaff K., Ainsley C., Akesson P., Alexander G., Allison J., Anderson K., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Bailey I., Ball A., Barberio E., Barlow R., Batley J., Baumann S., Belmke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2000)
European Physical Journal C.
17,
3,
p. 373-387
We compared the multiplicities of π0, η0, Κ0 and of charged particles in quark and gluon jets in 3-jet events, as measured by the OPAL experiment at LEP. The comparisons were performed for distributions unfolded to 100% pure quark and gluon jets, at an effective scale Qjet which took into account topological dependences of the 3-jet environment. The ratio of particle multiplicity in gluon jets to that in quark jets as a function of Qjet for π0, η or Κ0 was found to be independent of the particle species. This is consistent with the QCD prediction that the observed enhancement in the mean particle rate in gluon jets with respect to quark jets should be independent of particle species. In contrast to some theoretical predictions and previous observations, we observed no evidence for an enhancement of η meson production in gluon jets with respect to quark jets, beyond that observed for charged particles. We measured the ratio of the slope of the average charged particle multiplicity in gluon jets to that in quark jets, C, and we compared it to a next-to-next-to-next-to leading order calculation. Our result, C = 2.27 ± 0.20(stat. + syst.) is about one standard deviation higher than the perturbative prediction.
Abbiendi G., Ackerstaff K., Alexander G., Allison J., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Batley J., Baumann S., Bechtluft J., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2000)
European Physical Journal C.
12,
4,
p. 567-586
Searches fur the neutral Higgs bosons predicted by the Standard Model (SM) and the Minimal Supersymmetric extension of the Standard Model (MSSM) have been performed with the OPAL detector at LEP. Approximately 170 pb-1 of e+e- collision data collected at √s ≈ 189 GeV were used to search for Higgs boson production in the SM process e+e- → H0Z0 and the MSSM processes e+e- → h0Z0 and e+e- → A0h0. The searches are sensitive to the bb̄ and τ+T- decay modes of the Higgs bosons, and also to the MSSM decay mode h0 → A0A0. OPAL search results at lower centre-of-mass energies have been incorporated in the limits, which are valid at the 95% confidence level. For the SM Higgs boson, a lower mass bound of 91.0 GeV is obtained. In the MSSM. the limits are mu > 74.8 GeV and mA > 76.5 GeV, assuming tan 3 > 1, that the mixing of the scalar top quarks is either zero or maximal, and that the soft SUSY-breaking masses are 1 TeV. For the case of zero scalar top mixing, the values of tan 3 between 0.72 and 2.10 are excluded.
Abbiendi G., Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2000)
European Physical Journal C.
13,
3,
p. 185-195
The correlated production of Λ and Λ̄ baryons has been studied using 4.3 million multihadronic Z° decays recorded with the OPAL detector at LEP. Lambda pairs were investigated in the full data sample and for the first time also in 2-jet and 3-jet events selected with the k⊥ algorithm. The distributions of rapidity differences from correlated ΛΛ̄ pairs exhibit short-range, local correlations and prove to be a sensitive tool to test models, particularly for 2-jet events. The JETSET model describes the data best but some extra parameter tuning is needed to improve agreement with the experimental results in the rates and the rapidity spectra simultaneously. The recently developed modification of JETSET, the MOdified Popcorn Scenarium (MOPS), and also HERWIG do not give satisfactory results. This study of di-lambda production in 2- and 3-jet events supports the short-range compensation of quantum numbers.
Abbiendi G., Ackerstaff K., Alexander G., Allison J., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Batley J., Baumann S., Bechtluft J., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2000)
European Physical Journal C.
14,
1,
p. 51-71
A selection of di-lepton events with significant missing transverse momentum has been performed using a total data sample of 237.4 pb-1 at e+e- centre-of-rnass energies of approximately 183 GeV and 189 GeV. The observed numbers of events - 78 at 183 GeV and 301 at 189 GeV - are consistent with the numbers expected from Standard Model processes, which arise predominantly from W+W- production with both W bosons decaying leptonically. This topology is also an experimental signature for the pair production of new particles that decay to a charged lepton accompanied by one or more invisible particles. Discrimination techniques are described that optimise the sensitivity to particular new physics channels. No evidence for new phenomena is apparent. Upper limits on the production cross-section times branching ratio squared for sleptons and for leptonically decaying charginos and charged Higgs are presented in a manner intended to minimise the number of model assumptions. Assuming a 100% branching ratio for the decay ℓ̃±R → ℓ±χ̃01, where χ̃01 is the lightest neutralino, we exclude at 95% CL: right-handed smuons with masses below 82.3 GeV for mμ̃- - mχ̃01 > 3 GeV and right-handed staus with masses below 81.0 GeV for mτ̃- -mχ̃01 > 8 GeV. Right-handed selectrons are excluded at 95% CL for masses below 87.1 GeV for mẽ - mχ̃01 > 5 GeV, within the framework of the Minimal Supersymmetric Standard Model assuming μ, < - 100 GeV and tan β= 1.5. Charged Higgs bosons, H±, are excluded at 95% CL for masses below 82.8 GeV, assuming a 100% branching ratio for the decay H± → τ ± vτ.
Abbiendi G., Ackerstaff K., Ainsley C., Akesson P., Alexander G., Allison J., Anderson K., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Bailey I., Ball A., Barberio E., Barlow R., Baumann S., Bechtluft J., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2000)
European Physical Journal C.
18,
1,
p. 15-39
The photon structure function Fγ2(cursive Greek chi, Q2) has been measured using data taken by the OPAL detector at e+e- centre-of-mass energies of 91 GeV, 183 GeV and 189 GeV, m Q2 ranges of 1.5-30.0 GeV2 (LEP1) and 7.0-30.0 GeV2 (LEP2), probing lower values of cursive Greek chi than ever before. Since previous OPAL analyses, new Monte Carlo models and new methods, such as multi-variable unfolding have been introduced, reducing significantly the model dependent systematic errors in the measurement. The results do not conclusively prove, but are completely consistent with, the presence of a rise in Fγ2 at low-cursive Greek chi as expected from QCD.
Abbiendi G., Ackerstaff K., Alexander G., Allison J., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Batley J., Baumann S., Bechtluft J., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(2000)
European Physical Journal C.
14,
3,
p. 373-425
The measurement of small-angle Bhabha scattering is used to determine the luminosity at the OPAL interaction point for the LEP I data recorded between 1993 and 1995. The measurement is based on the OPAL Silicon-Tungsten Luminometer which is composed of two calorimeters encircling the LEP beam pipe, on opposite sides of the interaction point. The luminometer detects electrons from small-angle Bhabha scattering at angles between 25 and 58 mrad. At LEP center-of-mass energies around the Z0, about half of all Bhabha electrons entering the detector fall within a 79 nb fiducial acceptance region. The electromagnetic showers generated in the stack of 1 radiation length tungsten absorber plates are sampled by 608 silicon detectors with 38,912 radial pads of 2.5 mm width. The fine segmentation of the detector, combined with the precise knowledge of its physical dimensions, allows the trajectories of incoming 45 GeV electrons or photons to be determined with a total systematic error of less than 7 microns. We have quantified all significant sources of systematic experimental error in the luminosity determination by direct physical measurement. All measured properites of the luminosity event sample are found to be in agreement with current theoretical expectations. The total systematic measurement uncertainty is 3.4 × 10-4, significantly below the theoretical error of 5.4 × 10-4 currently assigned to the QED calculation of the Bhabha acceptance, and contributes negligibly to the total uncertainty in the OPAL measurement of Γinv/Γℓ+ℓ-, a quantity of basic physical interest which depends crucially on the luminosity measurement.
Abbiendi G., Ackerstaff K., Akesson P., Alexander G., Allison J., Anderson K., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Bailey I., Ball A., Barberio E., Barlow R., Batley J., Baumann S., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1999)
Physics Letters B.
471,
2-3,
p. 293-307
A study of W+W- events accompanied by hard photon radiation produced in e+e- collisions at LEP is presented. Events consistent with two on-shell W-bosons and an isolated photon are selected from 183 pb-1 of data recorded at √S = 189 GeV. From these data, 17 W+W- γ candidates are selected with photon energy greater than 10 GeV, consistent with the Standard Model expectation. These events are used to measure the e+e-→ W+W-γ cross-section within a set of geometric and kinematic cuts, σwwγ = 136 ± 37 ± 8 fb, where the first error is statistical and the second systematic. The photon energy spectrum is used to set the first direct, albeit weak, limits on possible anomalous contributions to the W+W- γ and W+W- γZ(o) vertices: -0.070GeV-2 < a(o)/Λ2 < 0.070 GeV-2, -0.13GeV-2 < a(c)/Λ2 < 0.19GeV-2, -0.61GeV-2 < a(n)/Λ2 < 0.57 GeV-2, where A represents the energy scale for new physics. (C) 1999 Published by Elsevier Science B.V.
Abbiendi G., Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Batley J., Baumann S., Bechtluft J., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1999)
European Physical Journal C.
11,
3,
p. 409-425
The structure of both quasi-real and highly virtual photons is investigated using the reaction e+e- → e+e-μ+μ-, proceeding via the exchange of two photons. The results are based on the complete OPAL dataset taken at e+e- centre-of-mass energies close to the mass of the Z boson. The QED structure function Fγ2 and the differential cross-section dσ/dx for quasi-real photons are obtained as functions of the fractional momentum x from the muon momentum which is carried by the struck muon in the quasi-real photon for values of Q2 ranging from 1.5 to 400 GeV2. The differential cross-section dσ/dx for highly virtual photons is measured for 1.5 < Q2 < 30 GeV2 and 1.5 < P2 < 20 GeV2, where Q2 and P2 are the negative values of the four-momentum squared of the two photons such that Q2 > P2. Based on azimuthal correlations the QED structure functions FγA and FγB for quasi-real photons are determined for an average Q2 of 5.4 GeV2.
Abbiendi G., Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1999)
European Physical Journal C.
8,
4,
p. 573-584
The inclusive charm hadron semileptonic branching fractions B(c → e) and B(c → μ) in Z0 → cc events have been determined using 4.4 million hadronic Z0 decays collected with the OPAL detector at LEP. A charm-enriched sample is obtained by selecting events with reconstructed D*± mesons. Using leptons found in the hemisphere opposite that of the D*± mesons, the semileptonic branching fractions of charm hadrons are measured to be B(c → e) = 0.103 ±0.009+0.009-0.008 and B(c→ μ) = 0.090 ±0.007+0.007-0.006, where the first errors are in each case statistical and the second systematic. Combining these measurements, an inclusive semileptonic branching fraction of charm hadrons of B(c → ℓ) = 0.095 ±0.006+0.007-0.006 is obtained.
Abbiendi G., Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1999)
European Physical Journal C.
8,
2,
p. 255-272
A search for charginos and neutralinos predicted by supersymmetric theories, has been performed using a data sample of 57 pb-1 at centre-of-mass energies of 181-184 GeV taken with the OPAL detector at LEP. No evidence for chargino or neutralino production has been found. Upper limits on chargino and neutralino pair production (X̃+1 X̃-1 ,X̃01X̃02) cross-sections are obtained as a function of the chargino mass (ℳX̃1±), the lightest neutralino mass (ℳX̃10) and the second lightest neutralino mass (ℳX̃20). For large chargino masses the limits have been improved with respect to the previous analyses at lower centre-of-mass energies. Exclusion regions at 95% confidence level (C.L.) of parameters of the Constrained Minimal Supersymmetric Standard Model are determined for the case of a large universal scalar mass, ℳ0, implying heavy scalar fermions, and for the case of a small ℳ0 resulting in light scalar fermions and giving the worst-case limits. Within this framework and for ℳX̃1± - ℳX̃10 ≥ 5 GeV the 95% C.L. lower limits on ℳX̃1± for ℳ0 = 500 GeV are 90.0 and 90.2 GeV for tan β = 1.5 and 35 respectively. These limits for all ℳ0 (the worst-case are 69.1 and 65.2 GeV for tan β = 1.5 and 35 respectively. Exclusion regions are also presented for neuraealino masses, including as absolute lower limit at 95% C.L. for the mass of the lightest neutralino of 30.1 GeV for ℳ0 = 500 GeV (24.2 GeV for all ℳ0), with implications for experiemental searches for the lightest neutralino as a dark matter candidate.
Abbiendi G., Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barillari T., Barlow R., Bartoldus R., Batley J., Baumann S., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1999)
European Physical Journal C.
10,
4,
p. 547-561
Di-jet production is studied in collisions of quasi-real photons radiated by the LEP beams at e(-)e(-) centre-of-mass energies root s(ee) = 161 and 172 GeV. The jets are reconstructed using a cone jet finding algorithm. The angular distributions of direct and double-resolved processes are measured and compared to the predictions of leading order and nest-to-leading order perturbative QCD. The jet energy profiles are also studied. The inclusive di-jet cross-section is measured as a function of E-T(jet) and \eta(jet)\ and compared to next-to-leading order perturbative QCD calculations. The inclusive di-jet cross-section as a function of \eta(jet)\ is compared to the prediction of the leading order Monte Carlo generators PYTHIA and PHOJET. The Monte Carlo predictions are calculated with different parametrisations of the parton distributions of the photon. The influence of the 'underlying event' has been studied to reduce the model dependence of the predicted jet cross-sections from the Monte Carlo generators.
Abbiendi G., Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Batley J., Baumann S., Bechtluft J., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1999)
European Physical Journal C.
11,
4,
p. 587-598
A sample of Z0 decays containing b-flavoured hadrons is tagged using leptons, and events having precise proper time measurements are selected. These events are used to study B0s oscillations. The flavour (b or b̄) at decay is determined from the lepton charge while the flavour at production is determined from jet charge or the charge of a second lepton, where available. The experiment was not able to resolve the oscillatory behaviour, and we deduce that the B0s oscillation frequency Δms > 5.2 ps-1 at the 95% confidence level.
Abbiendi G., Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1999)
European Physical Journal C.
8,
1,
p. 23-40
Photonic events with large missing energy have been observed in e+e-collisions at centre-of-mass energies of 130, 136 and 183 GeV collected in 1997 using the OPAL detector at LEP. Results are presented for event topologies with a single photon and missing transverse energy or with an acoplanar photon pair. Cross-section measurements are performed within the kinematic acceptance of each selection. These results are compared with the expectations from the Standard Model process e+e- → νν̄ + photon(s). No evidence is observed for new physics contributions to these final states. Using the data at √s = 183 GeV, upper limits on σ(e+e- → XY) · BR(X → Yγ) and σ(e+e- → XX) · BR2(X → Yγ) are derived for the case of stable and invisible Y. These limits apply to single and pair production of excited neutrinos (X = ν*, Y = ν), to neutralino production (X = ∼0χ2, Y = ∼0χ1) and to supersymmetric models in which X = ∼0χ1 and Y = G̃ is a light gravitino.
Abbiendi G., Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1999)
European Physical Journal C.
6,
1,
p. 1-18
Cross-sections for hadronic, bb̄ and lepton pair final states in e+e- collisions at √s=183 GeV, measured with the OPAL detector at LEP, are presented and compared with the predictions of the Standard Model. Forward-backward asymmetries for the leptonic final states have also been measured. Cross-sections and asymmetries are also presented for data recorded in 1997 at √s=130 and 136 GeV. The results are used to measure the energy dependence of the electromagnetic coupling constant αem, and to place limits on new physics as described by four-fermion contact interactions or by the exchange of a new heavy particle such as a leptoquark, or of a squark or sneutrino in supersymmetric theories with R-parity violation.
Abbiendi G., Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1999)
European Physical Journal C.
9,
1,
p. 1-9
The product branching ratio, f(b → Λb) · BR(Λb → ΛX), where Λb denotes any weakly-decaying b-baryon, has been measured using the OPAL detector at LEP. Λb's are selected by the presence of energetic Λ particles in bottom events tagged by the presence of displaced secondary vertices. A fit to the momenta of the Λ particles separates signal from B meson and fragmentation backgrounds. The measured product branching ratio is f(b → Λb) · BR(Λb → ΛX) = (2.67) ± 0.38(stat)+0.67-0.60(sys))%. Combined with a previous OPAL measurement, one obtains f(b → Λb) · BR(Λb → ΛX) = (3.50) ± 0.32(stat) ± 0.35(sys))%.
Abbiendi G., Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1999)
European Physical Journal C.
7,
3,
p. 407-435
The data collected by the OPAL experiment at √s = 183 GeV were used to search for Higgs bosons which are predicted by the Standard Model and various extensions, such as general models with two Higgs field doublets and the Minimal Supersymmetric Standard Model (MSSM). The data correspond to an integrated luminosity of approximately 54 pb-1. None of the searches for neutral and charged Higgs bosons have revealed an excess of events beyond the expected background. This negative outcome, in combination with similar results from searches at lower energies, leads to new limits for the Higgs boson masses and other model parameters. In particular, the 95% confidence level lower limit for the mass of the Standard Model Higgs boson is 88.3 GeV. Charged Higgs bosons can be excluded for masses up to 59.5 GeV. In the MSSM, mh0 > 70.5 GeV and mA0 > 72.0 GeV are obtained for tan β > 1, no and maximal scalar top mixing and soft SUSY-breaking masses of 1 TeV. The range 0.8 < tan β < 1.9 is excluded for minimal scalar top mixing and mtop ≤ 175 GeV. More general scans of the MSSM parameter space are also considered.
Abbiendi G., Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1999)
European Physical Journal C.
11,
4,
p. 619-642
Searches for pair-produced charginos and neutralinos with R-parity violating decays have been performed using a data sample corresponding to an integrated luminosity of 56 pb-1 collected with the OPAL detector at LEP at a centre-of-mass energy of √s = 183 GeV. An important consequence of R-parity violation is that the lightest supersymmetric particle becomes unstable. The searches have been performed under the assumptions that the lightest supersymmetric particle promptly decays and that only one R-parity violating coupling is dominant for each of the decay modes considered. Such processes would yield multiple leptons, jets plus leptons, or multiple jets with or without significant missing energy in the final state. No excess of such events above Standard Model backgrounds has been observed. Limits are presented on the production cross-sections of gauginos in R-parity violating scenarios. Limits are also presented in the framework of the Minimal Supersymmetric Standard Model.
Abbiendi G., Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1999)
European Physical Journal C.
8,
2,
p. 191-215
A study of W-pair production in e+e- annihilations at LEP is presented, based on 877 W+W- candidates corresponding to an integrated luminosity of 57pb-1 at √s = 183 GeV. Assuming that the angular distributions of the W-pair production and decay, as well as their branching fractions, are described by the Standard Model, the W-pair production cross-section is measured to be 15.43 ± 0.61(stat.) ± 0.26(syst.) pb. Assuming lepton universality and combining with our results from lower centre-of-mass energies, the W branching fraction to hadrons is determined to be 67.9 ± 1.2(stat.) ± 0.5(syst.)%. The number of W-pair candidates and the angular distributions for each final state (qq̄l̄νl, qq̄qq̄, l̄νllν̄l) are used to determine the triple gauge boson couplings. After combining these values with our results from lower centre-of-mass energies we obtain Δκγ = 0.11+0.52-0.37, Δgz1 = 0.01+0.13-0.12 and λ = -0.10+0.13-0.12, where the errors include both statistical and systematic uncertainties and each coupling is determined by setting the other two couplings to the Standard Model value. The fraction of W bosons produced with a longitudinal polarisation is measured to be 0.242 ± 0.091(stat.) ± 0.023(syst.). All these measurements are consistent with the Standard Model expectations.
Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1999)
European Physical Journal C.
7,
3,
p. 369-381
Fragmentation functions for charged particles in Z0 → qq̄ events have been measured for bottom (b), charm (c) and light (uds) quarks as well as for all flavours together. The results are based on data recorded between 1990 and 1995 using the OPAL detector at LEP. Event samples with different flavour compositions were formed using reconstructed D*± mesons and secondary vertices. The ξP = ln(1/xp) distributions and the position of their maxima ξ0 are also presented separately for uds, c and b quark events. The fragmentation function for b quarks is significantly softer than for uds quarks.
Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1999)
European Physical Journal C.
8,
1,
p. 3-21
The Michel parameters of the leptonic tau decays are measured using the OPAL detector at LEP. The parameters pe, Ee, (E delta)e (with l = e, mu) and eta(mu), are extracted from the energy spectra of the charged decay leptons and from their energy-energy correlations. A new method involving a global likelihood fit of Monte Carlo generated events with complete detector simulation and background treatment has been applied to the data recorded at center-of-mass energies close to root s = m(Z)o corresponding to an integrated luminosity of 155 pb(-1). If e-mu universality is assumed and inferring the tau polarization from neutral current data, the measured Michel parameters are: rho = 0.781 +/- 0.028 +/- 0.018, xi = 0.98 +/- 0.22 +/- 0.10, eta = 0.027 +/- 0.055 +/- 0.005, xi delta = 0.65 +/- 0.14 +/- 0.07. where the value of eta has been constrained using the published OPAL measurements of the leptonic branching ratios and the tau lifetime; Limits on non-standard coupling constants and on the masses of new gauge bosons are obtained. The results are in agreement with the V-A prediction of the Standard Model.
Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Beeston C., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1999)
European Physical Journal C.
6,
2,
p. 225-238
Searches for a scalar top quark and a scalar bottom quark have been performed using a total data sample of 56.8 pb-1 at a centre-of-mass energy of √s = 183 GeV collected with the OPAL detector at LEP. No candidate events were observed. Combining this result with those obtained at lower centre-of-mass energies, the 95% C.L. lower limit on the scalar top quark mass is 85.0 GeV if the mixing angle between the supersymmetric partners of the left- and right-handed states of the top quark is zero. The lower limit is 81.3 GeV, even if the scalar top quark decouples from the Z0 boson. These limits were obtained assuming that the scalar top quark decays into a charm quark and the lightest neutralino, and that the mass difference between the scalar top quark and the lightest neutralino is larger than 10 GeV. The complementary decay mode of the scalar top quark in which it decays into a bottom quark, a charged lcpton and a scalar neutrino was also studied. From a similar analysis, a mass limit on the light scalar bottom quark was set at 82.7 GeV for a mass difference between the scalar bottom quark and the lightest neutralino larger than 7 GeV, and at 84.0 GeV for the mass difference larger 10 GeV and the lightest neutralino heavier than 30 GeV. These limits were obtained assuming that the scalar bottom quark decays into a bottom quark and the lightest neutralino, and that a mixing angle between the supersymmetric partners of the left- and right-handed states of the bottom quark is zero.
Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1999)
European Physical Journal C.
8,
2,
p. 241-254
The production of K0S mesons and Λ baryons in quark and gluon jets has been investigated using two complementary techniques. In the first approach, which provides high statistical accuracy, jets were selected using different jet finding algorithms and ordered according to their energy. Production rates were determined taking into account the dependences of quark and gluon compositions as a function of jet energy as predicted by Monte Carlo models. Selecting three-jet events with the k⊥ (Durham) jet finder (Ycut = 0.005), the ratios of K0S and Λ production rates in gluon and quark jets relative to the mean charged particle multiplicity were found to be 1.10 ± 0.02 ± 0.02 and 1.41 ± 0.04 ± 0.04, respectively, where the first uncertainty is statistical and the second is systematic. In the second approach, a new method of identifying quark jets based on the collimation of energy flow around the jet axis is introduced and was used to anti-tag gluon jets in symmetric (Y-shaped) three-jet events. Using the cone jet finding algorithm with a cone size of 30°, the ratios of relative production rates in gluon and quark jets were determined to be 0.94 ± 0.07 ± 0.07 for K0S and 1.18 ± 0.10 ± 0.17 for Λ. The results of both analyses are compared to the predictions of Monte Carlo models.
Abbiendi G., Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arceljli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Batley J., Baumann S., Bechtluft J., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1999)
European Physical Journal C.
11,
2,
p. 239-250
A multidimensional study of local multiplicity fluctuations and multiparticle correlations of hadrons produced in Z0 decays is performed. The study is based on the data sample of more than 4 × 106 events recorded with the OPAL detector at LEP. The fluctuations and correlations are analysed in terms of the normalized scaled factorial moments and cumulants up to the fifth order. The moments are observed to have intermittency-like behaviour, which is found to be more pronounced with increasing dimension. The large data sample allows for the first time a study of the factorial cumulants in e+ e- annihilation. The analysis of the cumulants shows the existence of genuine multiparticle correlations with a strong intermittency rise up to higher orders. These correlations are found to be stronger in higher dimensions. The decomposition of the factorial moments into lower-order correlations shows that the dynamical fluctuations have important contributions from genuine many-particle correlations. The Monte Carlo models JETSET 7.4 and HERWIG 5.9 are found to reproduce the trend of the measured moments and cumulants but they underestimate the magnitudes. The results are found to be consistent with QCD jet formation dynamics, although additional contributions from other mechanisms cannot be excluded.
Abbiendi G., Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1999)
European Physical Journal C.
8,
4,
p. 559-571
Bose-Einstein correlations between like-charge pions are studied in hadronic final states produced by e+e- annihilations at center-of-mass energies of 172 and 183 GeV. Three event samples are studied, each dominated by one of the processes W+W- →qq̄ℓν̄e, W+W- qq̄qq̄, or (Z0/γ)* → qq̄. After demonstrating the existence of Bose-Einstein correlations in W decays, an attempt is made to determine Bose-Einstein correlations for pions originating from the same W boson and from different W bosons, as well as for pions from (Z0/γ)* → qq̄ events. The following results are obtained for the individual chaoticity parameters λ, assuming a common source radius R: λsame= 0.63 ± 0.19 ± 0.14 λdiff = 0.22 ± 0.53 ±0.14, λ Z* = 0.47 ± 0.11 ± 0.08, R = 0.92 ± 0.09 ± 0.09 fm. In each case, the first error is statistical and the second is systematic. At the current level of statistical precision it is not established whether Bose-Einstein correlations, between pions from different W bosons exist or not.
Cohen I. R., Gross E., Lellouch D., Levinson L., Abbiendi G., Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Batley J., Baumann S., Bechtluft J. & Behnke T.
(1999)
Physics Letters B.
464,
3-4,
p. 311-322
A search is described for the generic process e+e- → XY, where X is a neutral heavy scalar boson decaying into a pair of photons, and Y is a neutral heavy boson (scalar or vector) decaying into a fermion pair. The search is motivated mainly by the cases where either X, or both X and Y, are Higgs bosons. In particular, we investigate the case where X is the Standard Model Higgs boson and Y the Z0 boson. Other models with enhanced Higgs boson decay couplings to photon pairs are also considered. The present search combines the data set collected by the OPAL collaboration at 189 GeV collider energy, having an integrated luminosity of 182.6 pb-1, with data samples collected at lower energies. The search results have been used to put 95% confidence level bounds, as functions of the mass Mx, on the product of the cross-section and the relevant branching ratios, both in a model independent manner and for the particular models considered.
Abbiendi G., Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Batley J., Baumann S., Bechtluft J., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1999)
European Physical Journal C.
11,
4,
p. 643-659
We present a test of the flavour independence of the strong coupling constant for charm and bottom quarks with respect to light (uds) quarks, based on a hadronic event sample obtained with the OPAL detector at LEP. Five observables related to global event shapes were used to measure αs in three flavour tagged samples (uds, c and b). The event shape distributions were fitted by O(α2s) calculations of jet production taking into account mass effects for the c and b quarks. We find: αcs/αudss = 0.997 ± 0.038 (stat.) ± 0.030 (syst.) ± 0.012 (theory) and αbs/αudss = 0.993 ± 0.008 (stat.) ± 0.006 (syst.) ± 0.011 (theory).
Abbiendi G., Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1999)
Physics Letters B.
447,
1-2,
p. 157-166
Using data collected with the OPAL detector at LEP, we have searched for the processes e+ e- → Z0 → pe-, pμ- and the charge conjugate final-states. These would violate the conservation of the baryon-number B, lepton-number L and the fermion-number n = (B + L). No evidence for such decays has been found, and the 95% confidence level upper limits on the partial widths Γ(Z0→ pe) and Γ(Z0→ pμ) are found to be 4.6 and 4.4 keV respectively.
Abbiendi G., Ackerstaff K., Alexander G., Allison J., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Batley J., Baumann S., Bechtluft J., Behnke T., Bell K., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1999)
Physics Letters B.
465,
1-4,
p. 303-314
The process e+e- → γγ(γ) is studied using data recorded with the OPAL detector at LEP. The data sample taken at a centre-of-mass energy of 189 GeV corresponds to a total integrated luminosity of 178 pb-1. The measured cross-section agrees well with the expectation from QED. A fit to the angular distribution is used to obtain improved limits at 95% CL on the QED cut-off parameters: Λ+> 304 GeV and Λ-> 295 GeV as well as a mass limit for an excited electron, Me* > 306 GeV assuming equal e*eγ and eeγ couplings. Graviton exchange in the context of theories with higher dimensions is excluded for scales G+< 660 GeV and G-< 634 GeV. No evidence for resonance production is found in the invariant mass spectrum of photon pairs. Limits are obtained for the cross-section times branching ratio for a resonance decaying into two photons and produced in association with another photon.
Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1999)
European Physical Journal C.
6,
2,
p. 253-264
The production of charged hadrons and K0S mesons in the collisions of quasi-real photons has been measured using the OPAL detector at LEP. The data were taken at e+e- centre-of-mass energies of 161 and 172 GeV. The differential cross-sections as a function of the transverse momentum and the pseudorapidity of the charged hadrons and K0S mesons have been compared to the leading order Monte Carlo simulations of PHOJET and PYTHIA and to perturbative next-to-leading order (NLO) QCD calculations. The distributions have been measured in the range 10 < W < 125 GeV of the hadronic invariant mass W. By comparing the transverse momentum distribution of charged hadrons measured in γγ interactions with γ-proton and meson-proton data we find evidence for hard photon interactions in addition to the purely hadronic photon interactions.
Abbiendi G., Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1999)
Physics Letters B.
453,
1-2,
p. 138-152
Using a data sample of 57 pb-1 recorded at a centre-of-mass energy of 183 GeV with the OPAL detector at LEP, 282 W+W- → qq̄qq̄ and 300 W+W- → qq̄lv̄l candidate events are used to obtain a measurement of the mass of the W boson, Mw = 80.39 ± 0.13(stat.) ± 0.05(syst.) GeV, assuming the Standard Model relation between Mw and TW. A second fit provides a direct measure of the width of the W boson and gives TW = 1.96 ± 0.34(stat.) + 0.20(syst.) GeV. These results are combined with previous OPAL results to obtain Mw = 80.38 ± 0.12(stat.) + 0.05(syst.) GeV and Tw = 1.84 ± 0.32(stat.) ± 0.20(syst.) GeV.
Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1999)
European Physical Journal C.
7,
4,
p. 571-593
The spectral functions of the vector current and the axial-vector current have been measured in hadronic τ decays using the OPAL detector at LEP. Within the framework of the Operator Product Expansion a simultaneous determination of the strong coupling constant αs, the non-perturbative operators of dimension 6 and 8 and of the gluon condensate has been performed. Different perturbative descriptions have been compared to the data. The Contour Improved Fixed Order Perturbation Theory gives αs(mτ2) = 0.348 ± 0.009exp ± 0.019theo at the τ-mass scale and αs(mZ2) = 0.1219 ± 0.0010exp ± 0.0017theo at the Z°- mass scale. The values obtained for αs(mZ2) using Fixed Order Perturbation Theory or Renormalon Chain Resummation are 2.3% and 4.1% smaller, respectively. The 'running' of the strong coupling between S0 ≃ 1.3 GeV2 and S0 = mτ2 has been tested from direct fits to the integrated differential hadronic decay rate Rτ(s0). A test of the saturation of QCD sum rules at the τ-mass scale has been performed.
Abbiendi G., Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1999)
Physics Letters B.
453,
1-2,
p. 153-168
The predicted effects of final state interactions such as colour reconnection are investigated by measuring properties of hadronic decays of W bosons, recorded at a centre-of-mass energy of √s ≃ 182.7 GeV in the OPAL detector at LEP. Dependence on the modelling of hadronic W decays is avoided by comparing W+W-→qq̄qq̄ events with the non-leptonic component of W+W-→qq̄ℓv̄ℓ events. The scaled momentum distribution, its mean value, 〈xp〉, and that of the charged particle multiplicity, 〈nch〉, are measured and found to be consistent in the two channels. The measured differences are: Δ〈nch〉 = 〈nch4q〉 - 2〈nchqqℓv〉 = +0.7 ± 0.6 Δ〈xp〉 = 〈xp4q〉 - 〈xpqqℓv〉 = (-0.09 ± 0.09 ± 0.05) × 10-2 In addition, measurements of rapidity and thrust are performed for W+W-→ qq̄qq̄ events. The data are described well by standard QCD models and disfavour one model of colour reconnection within the ARIADNE program. The current implementation of the Ellis-Geiger model of colour reconnection is excluded. At the current level of statistical precision no evidence for colour reconnection effects was found in the observables studied. The predicted effect of colour reconnection on OPAL measurements of MW is also quantified in the context of models studied.
Abbiendi G., Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Batley J., Baumann S., Bechtluft J., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1999)
Physics Letters B.
456,
1,
p. 95-106
Searches for a scalar top quark and a scalar bottom quark have been performed using a data sample of 182 pb-1 at a centre-of-mass energy of √s = 189 GeV collected with the OPAL detector at LEP. No evidence for a signal was found. The 95% confidence level (C.L.) lower limit on the scalar top quark mass is 90.3 GeV if the mixing angle between the supersymmetric partners of the left- and right-handed states of the top quark is zero. In the worst case, when the scalar top quark decouples from the Z0 boson, the lower limit is 87.2 GeV. These limits were obtained assuming that the scalar top quark decays into a charm quark and the lightest neutralino, and that the mass difference between the scalar top quark and the lightest neutralino is larger than 10 GeV. The complementary decay mode of the scalar top quark decaying into a bottom quark, a charged lepton and a scalar neutrino has also been studied. From a search for the scalar bottom quark, a mass limit of 88.6 GeV was obtained if the mass difference between the scalar bottom quark and the lightest neutralino is larger than 7 GeV. These limits significantly improve the previous OPAL limits.
Abbiendi G., Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1999)
Physics Letters B.
447,
1-2,
p. 134-146
The branching ratio for the decay τ- → e-ν + ̄eντ has been measured using Z0 decay data collected by the OPAL experiment at LEP. In total 33073 τ- → e-ν + ̄eντ candidates were identified from a sample of 186 197 selected τ decays, giving a branching ratio of B(τ- → e-ν + ̄eντ) = (17.81 ± 0.09 (stat) ± 0.06 (syst))%. This result is combined with other measurements to test e - μ and μ - τ universality in charged-current weak interactions. Additionally, the strong coupling constant αs (mτ2) has been extracted from B(τ- → e-ν + ̄eντ) and evolved to the Z0 mass scale, giving αs(mZ2) = 0.1204 ± 0.0011 (exp) ± 0.0019 (theory).
Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1999)
European Physical Journal C.
8,
2,
p. 183-189
The branching ratios of the decay of the τ lepton to five charged hadrons have been measured with the OPAL detector at LEP using data collected between 1991 and 1995 at e+e- centre-of-mass energies close to the Z0 resonance. The branching ratios are measured to be B(τ- → 3h-2h+ντ) = (0.091 ± 0.014 ± 0.006)% B(τ- → 3h-2h+π0ντ) = (0.027 ± 0.018 ± 0.009)% where the first error is statistical and the second systematic.
Abbiendi G., Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Batley J., Baumann S., Bechtluft J., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1999)
European Physical Journal C.
11,
2,
p. 217-238
Gluon jets are identified in hadronic Z0 decays as all the particles in a hemisphere opposite to a hemisphere containing two tagged quark jets. Gluon jets defined in this manner are equivalent to gluon jets produced from a color singlet point source and thus correspond to the definition employed for most theoretical calculations. In a separate stage of the analysis, we select quark jets in a manner to correspond to calculations, as the particles in hemispheres of flavor tagged light quark (uds) events. We present the distributions of rapidity, scaled energy, the logarithm of the momentum, and transverse momentum with respect to the jet axes, for charged particles in these gluon and quark jets. We also examine the charged particle multiplicity distributions of the jets in restricted intervals of rapidity. For soft particles at large pT, we observe the charged particle multiplicity ratio of gluon to quark jets to be 2.29±0.09 (stat.)±0.15 (syst.), in agreement with the prediction that this ratio should approximately equal the ratio of QCD color factors, CA/CF = 2.25. The intervals used to define soft particles and large pT for this result, p < 4 GeV/c and 0.8 < pT < 3.0 GeV/c, are motivated by the predictions of the Herwig Monte Carlo multihadronic event generator. Additionally, our gluon jet data allow a sensitive test of the phenomenon of non-leading QCD terms known as color reconnection. We test the model of color reconnection implemented in the Ariadne Monte Carlo multihadronic event generator and find it to be disfavored by our data.
Abbiendi G., Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1999)
European Physical Journal C.
8,
2,
p. 217-239
The fraction of Z0 → bb̄ events in hadronic Z0 decays has been measured by the OPAL experiment using the data collected at LEP between 1992 and 1995. The Z0 → bb̄ decays were tagged using displaced secondary vertices, and high momentum electrons and mouns. Systematic uncertainties were reduced by measuring the b-tagging efficiency using a double tagging technique. Efficiency correlations between opposite hemispheres of an event are small, and are well understood through comparison between real and simulated data samples. A value of Rb ≡ σ(e+e- → bb̄)/ σ (e+e- → hadrons) = 0.2178 ± 0.0011 ± 0.0013 was obtained, where thr first error is statistical and the second systematic. The uncertainty on Rc, the fraction Z0 → cc̄ events in hadronic Z0 decays, is not included in the errors. The dependence o nRc is ΔRb/Rb = -0.056ΔRc/,Rc where ΔRc is the deviation of Rc from the value 0.172 predicted by the Standard Model. The result for Rb agrees with the value of 0.2155 ± 0.0003 predicted by the Standard Model.
Cohen I. R., Gross E., Abbiendi G., Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S. & Bechtluft J.
(1998)
Physics Letters B.
444,
3-4,
p. 539-554
In the Standard Model, b quarks produced in e+e- annihilation at the Z0 peak have a large average longitudinal polarization of -0.94. Some fraction of this polarization is expected to be transferred to b-flavored baryons during hadronization. The average longitudinal polarization of weakly decaying b baryons, 〈PΛbL〉, is measured in approximately 4.3 million hadronic Z0 decays collected with the OPAL detector between 1990 and 1995 at LEP. Those b baryons that decay semileptonically and produce a Λ baryon are identified through the correlation of the baryon number of the Λ and the electric charge of the lepton. In this semileptonic decay, the ratio of the neutrino energy to the lepton energy is a sensitive polarization observable. The neutrino energy is estimated using missing energy measurements. From a fit to the distribution of this ratio, the value 〈PΛbL〉 = -0.56+0.20-0.13 ± 0.09 is obtained, where the first error is statistical and the second systematic.
Abbiendi G., Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1998)
Physics Letters B.
440,
3-4,
p. 393-402
In the process e+e- → hadrons, one of the effects of gluon emission is to modify the (1 + cos2θ) form of the angular distribution of the thrust axis, an effect which may be quantified by the longitudinal cross-section. Using the OPAL detector at LEP, we have determined the longitudinal to total cross-section ratio to be σL/σtot = 0.0127 ± 0.0016 ± 0.0013 at the parton level, in good agreement with the expectation of QCD computed to script O sign(α2s). Comparisons at the hadron level with Monte Carlo models are presented. The dependence of the longitudinal cross-section on the value of thrust has also been studied, and provides a new test of QCD.
Ackerstaff K., Alexander K., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barillari T., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1998)
Physics Letters B.
439,
1-2,
p. 197-208
We present an observation at LEP of the production of χc2 mesons in the collisions of two quasi-real photons using the OPAL detector. The χc2 mesons are reconstructed in the decay channel χc2 → J/ψγ →ℓ+ ℓ- γ (with ℓ = e, μ) using all data taken at e+e- centre-of-mass energies of 91 and 183 GeV, corresponding to integrated luminosities of 167 and 55 pb-1 respectively. The two-photon width of the χc2 is determined to be Γ(χc2 → γγ) = 1.76 ± 0.47 ± 0.37 ± 0.15 keV, where the first error is statistical, the second is systematic and the third comes from branching ratio uncertainties.
Abbiendi G., Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1998)
Physics Letters B.
438,
3-4,
p. 391-404
We report the first observation of Z/γ* production in Compton scattering of quasi-real photons. This is a subprocess of the reaction e+e-→ e+e-Z/γ*, where one of the final state electrons is undetected. Approximately 55pb-1 of data collected in the year 1997 at an e+e- centre-of-mass energy of 183 GeV with the OPAL detector at LEP have been analysed. The Z/γ* from Compton scattering has been detected in the hadronic decay channel. Within well defined kinematic bounds, we measure the product of cross-section and Z/γ* branching ratio to hadrons to be (0.9 ± 0.3 ± 0.1) pb for events with a hadronic mass larger than 60 GeV, dominated by (e)eZ production. In the hadronic mass region between 5 GeV and 60 GeV, dominated by (e)eγ* production, this product is found to be (4.1 ± 1.6 ± 0.6) pb. Our results agree with the predictions of two Monte Carlo event generators, grc4f and PYTHIA.
Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1998)
Physics Letters B.
438,
3-4,
p. 379-390
The process e+e- → γγ(γ) is studied using data recorded with the OPAL detector at LEP. The data sample corresponds to a total integrated luminosity of 56.2 pb-1 taken at a centre-of-mass energy of 183 GeV. The measured cross-section agrees well with the expectation from QED. A fit to the angular distribution is used to obtain improved limits at 95% CL on the QED cut-off parameters: Λ+> 233 GeV and Λ_> 265 GeV as well as a mass limit for an excited electron, Me* > 227 GeV assuming equal e * eγ and eeγ couplings. No evidence for resonance production is found in the invariant mass spectrum of photon pairs. Limits are obtained for the cross-section times branching ratio for a resonance decaying into two photons.
Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1998)
Physics Letters B.
437,
1-2,
p. 218-230
A search for the resonant production of high mass photon pairs associated with a leptonic or hadronic system has been performed using a data sample of 57.7 pb-1 collected at an average center-of-mass energy of 182.6 GeV with the OPAL detector at LEP. No evidence for contributions from non-Standard Model physics processes was observed. The observed candidates are used to place limits on B(H0 → γγ) assuming a Standard Model production rate for Higgs boson masses up to 92 GeV, and on the production cross section for a scalar resonance decaying into di-photons up to a mass of 170 GeV. Upper limits on the product of cross section and branching ratios, σ(e+e- → XY) × B(X → γγ) × B(Y → ff̄), as low as 70 fb are obtained over the range 10 < MX < 170 GeV for the case where 10 < MY < 160 GeV and MX + MY > 90 GeV, independent of the nature of Y provided it decays to a fermion pair and has negligible width. Higgs scalars which couple only to gauge bosons at Standard Model strength are ruled out up to a mass of 90.0 GeV at the 95% confidence level. Limits are also placed on non-minimal Higgs sectors having triplet representations.
Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1998)
Physics Letters B.
433,
1-2,
p. 195-208
A search for stable and long-lived massive particles of electric charge |Q/e| = 1 or 2/3, pair-produced in e+ e- collisions at centre-of-mass energies from 130 to 183 GeV, is reported by the OPAL collaboration at LEP. No evidence for production of these particles was observed in a mass range between 45 and 89.5 GeV. Model-independent upper limits on the production cross-section between 0.05 and 0.19 pb have been derived for scalar and spin-1/2 particles with charge ±1. Within the framework of the minimal supersymmetric model (MSSM), this implies a lower limit of 82.5 (83.5) GeV on the mass of long-lived right- (left-)handed scalar muons and scalar taus. Long-lived charged leptons and charginos are excluded for masses below 89.5 GeV. For particles with charge ±2/3 the upper limits on the production cross-section vary between 0.05 and 0.2 pb. All limits, on masses and on cross-sections, are valid at the 95% confidence level for particles with lifetimes longer than 10-6 s.
Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1998)
Physics Letters B.
426,
1-2,
p. 180-192
A search is described to detect charged Higgs bosons via the process e+e-→H+H-, using data collected by the OPAL detector at center-of-mass energies of 130-172 GeV with a total integrated luminosity of 25 pb-1. The decay channels are assumed to be H+→qq̄ and H+-→ τ+vτ. No evidence for charged Higgs boson production is observed. The lower limit for its mass is determined to be 52 GeV at 95% confidence level, independent of the H+→τ+vτ branching ratio.
Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Beeston C., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1998)
Physics Letters B.
426,
1-2,
p. 161-179
This paper presents updated measurements of the lifetimes of the B0s meson and the Λ0b baryon using 4.4 million hadronic Z0 decays recorded by the OPAL detector at LEP from 1990 to 1995. A sample of B0s decays is obtained using D-sl+ combinations, where the D-s is fully reconstructed in the φπ-, K*0K- and K-K0S decay channels and partially reconstructed in the φl-v̄X decay mode. A sample of Λ0b decays is obtained using Λ+cl- combinations, where the Λ+c is fully reconstructed in its decay to a pK-π+ final state and partially reconstructed in the Λl+vX decay channel. From 172±28 D-sl+ combinations attributed to B0s decays, the measured lifetime is π(B0s) = 1.50+0.16-0.15±0.04 ps, where the errors are statistical and systematic, respectively. From the 129±25 Λ+cl- combinations attributed to Λ0b decays, the measured lifetime is τ(Λ0b) = 1.29+0.24-0.22±0.06 ps, where the errors are statistical and systematic, respectively.
Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K. J., Anderson S., Arcelli S., Asai S., Axen D., Azuelos G., Ball A. H., Barberio E., Barlow R. J., Bartoldus R., Batley J. R., Baumann S., Bechtluft J., Beeston C., Behnke T., Bell A. N., Bell K. W., Bella G., Bentvelsen S., Bethke S., Biebel O., Biguzzi A., Bird S. D., Blobel V., Bloodworth I. J., Bloomer J. E., Bobinski M., Bock P., Bonacorsi D., Boutemeur M., Bouwens B. T., Braibant S., Brigliadori L., Brown R. M., Burckhart H. J., Burgard C., Bürgin R., Capiluppi P., Carnegie R. K., Carter A. A., Carter J. R., Chang C. Y., Charlton D. G., Chrisman D., Clarke P. E., Cohen I., Conboy J. E., Cooke O. C., Cuffiani M., Dado S., Dallapiccola C., Dallavalle G. M., Davis R., de Jong S., del Pozo L. A., Desch K., Dienes B., Dixit M. S., do Couto e Silva E., Doucet M., Duchovni E., Duckeck G., Duerdoth I. P., Eatough D., Edwards J. E., Estabrooks P. G., Evans H. G., Evans M., Fabbri F., Fanti M., Faust A. A., Fiedler F., Fierro M., Fischer H. M., Fleck I., Folman R., Fong D. G., Foucher M., Fürtjes A., Futyan D. I., Gagnon P., Gary J. W., Gascon J., Gascon-Shotkin S. M., Geddes N. I., Geich-Gimbel C., Geralis T., Giacomelli G., Giacomelli P., Giacomelli R., Gibson V., Gibson W. R., Gingrich D. M., Glenzinski D., Goldberg J., Goodrick M. J., Gorn W., Grandi C., Gross E., Grunhaus J., Gruwé M., Hajdu C., Hanson G. G., Hansroul M., Hapke M., Hargrove C. K., Hart P. A., Hartmann C., Hauschild M., Hawkes C. M., Hawkings R., Hemingway R. J., Herndon M., Herten G., Heuer R. D., Hildreth M. D., Hill J. C., Hillier S. J., Hobson P. R., Homer R. J., Honma A. K., Horváth D., Hossain K. R., Howard R., Hüntemeyer P., Hutchcroft D. E., Igo-Kemenes P., Imrie D. C., Ingram M. R., Ishii K., Jawahery A., Jeffreys P. W., Jeremie H., Jimack M., Joly A., Jones C. R., Jones G., Jones M., Jost U., Jovanovic P., Junk T. R., Karlen D., Kartvelishvili V., Kawagoe K., Kawamoto T., Kayal P. I., Keeler R. K., Kellogg R. G., Kennedy B. W., Kirk J., Klier A., Kluth S., Kobayashi T., Kobel M., Koetke D. S., Kokott T. P., Kolrep M., Komamiya S., Kress T., Krieger P., von Krogh J., Kyberd P., Lafferty G. D., Lahmann R., Lai W. P., Lanske D., Lauber J., Lautenschlager S. R., Layter J. G., Lazic D., Lee A. M., Lefebvre E., Lellouch D., Letts J., Levinson L., Lloyd S. L., Loebinger F. K., Long G. D., Losty M. J., Ludwig J., Macchiolo A., Macpherson A., Mannelli M., Marcellini S., Markus C., Martin A. J., Martin J. P., Martinez G., Mashimo T., Müttig P., McDonald W. J., McKenna J., Mckigney E. A., McMahon T. J., McPherson R. A., Meijers F., Menke S., Merritt F. S., Mes H., Meyer J., Michelini A., Mikenberg G., Miller D. J., Mincer A., Mir R., Mohr W., Montanari A., Mori T., Morii M., Muller U., Mihara S., Nagai K., Nakamura I., Neal H. A., Nellen B., Nisius R., O'Neale S. W., Oakham F. G., Odorici F., Ogren H. O., Oh A., Oldershaw N. J., Oreglia M. J., Orito S., Pálinkás J., Pásztor G., Pater J. R., Patrick G. N., Patt J., Pearce M. J., Perez-Ochoa R., Petzold S., Pfeifenschneider P., Pilcher J. E., Pinfold J., Plane D. E., Poffenberger P., Poli B., Posthaus A., Rees D. L., Rigby D., Robertson S., Robins S. A., Rodning N., Roney J. M., Rooke A., Ros E., Rossi A. M., Routenburg P., Rozen Y., Runge K., Runolfsson O., Ruppel U., Rust D. R., Rylko R., Sachs K., Saeki T., Sarkisyan E. K., Sbarra C., Schaile A. D., Schaile O., Scharf F., Scharff-Hansen P., Schenk P., Schieck J., Schleper P., Schmitt B., Schmitt S., Schüning A., Schrüder M., Schultz-Coulon H. C., Schumacher M., Schwick C., Scott W. G., Shears T. G., Shen B. C., Shepherd-Themistocleous C. H., Sherwood P., Siroli G. P., Sittler A., Skillman A., Skuja A., Smith A. M., Snow G. A., Sobie R., Söldner-Rembold S., Springer R. W., Sproston M., Stephens K., Steuerer J., Stockhausen B., Stoll K., Strom D., Szymanski P., Tafirout R., Talbot S. D., Tanaka S., Taras P., Tarem S., Teuscher R., Thiergen M., Thomson M. A., von Törne E., Towers S., Trigger I., Trócsányi Z., Tsur E., Turcot A. S., Turner-Watson M. F., Utzat P., van Kooten R., Verzocchi M., Vikas P., Vokurka E. H., Voss H., Wäckerle F., Wagner A., Ward C. P., Ward D. R., Watkins P. M., Watson A. T., Watson N. K., Wells P. S., Wermes N., White J. S., Wilkens B., Wilson G. W., Wilson J. A., Wolf G., Wyatt T. R., Yamashita S., Yekutieli G., Zacek V. & Zer-Zion D.
(1998)
European Physical Journal C.
2,
2,
p. 213-236
A search for charginos and neutralinos, predicted by supersymmetric theories, has been performed using a data sample of 10.3 pb-1 at centre-of-mass energies of √s =170 and 172 GeV with the OPAL detector at LEP. No evidence for these particles has been found. The results are combined with those from previous OPAL chargino and neutralino searches at lower energies to obtain limits. Exclusion regions at 95% C.L. of parameters of the Minimal Supersymmetric Standard Model are determined. Within this framework, for tan β ≥ 1.0, lower mass limits are placed on the lightest chargino and the three lightest neutralinos. The 95% C.L. lower mass limit on the lightest chargino, assuming that it is heavier than the lightest neutralino by more than 10 GeV, is 84.5 GeV for the case of a large universal scalar mass (m0 > 1 TeV) and 65.7 GeV for the smallest m0 compatible with current limits on the sneutrino mass and slepton cross-sections. The lower limit on the lightest neutralino mass at 95% C.L. for tan β≥ 1.0 is 24.7 GeV for m0 = 1 TeV and 13.3 GeV for the minimum m0 scenario. These mass limits are higher for increasing values of tan β. The interpretation of the limits in terms of gluino and scalar quark mass limits is also given.
Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Beeston C., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1998)
Physics Letters B.
420,
1-2,
p. 157-168
A search for decays of the Bc meson was performed using data collected from 1990-1995 with the OPAL detector on or near the Z0 peak at LEP. The decay channels B+c→J/ψπ+, B+c→J/ψa+1 and B+c→J/ψℓ+v were investigated, where ℓ denotes an electron or a muon. Two candidates are observed in the mode B+c→J/ψπ+, with an estimated background of (0.63 ± 0.20) events. The weighted mean of the masses of the two candidates is (6.32 ± 0.06) GeV/c2, which is consistent with the predicted mass of the Bc meson. One candidate event is observed in the mode B+c→J/ψℓ+v, with an estimated background of (0.82 ± 0.19) events. No candidate events are observed in the B+c→J/ψa+1 decay mode, with an estimated background of (1.10 ± 0.22) events. Upper bounds at the 90% confidence level are set on the production rates for these processes.
Anderson S., Batley J., Beck G., Behnke T., Bobinski M., Carter A., Carter J., de Jong J. S., Dunwoody U., Gibson V., Glessing W., Goodrick M., Gross E., Hammarstrom R., Hanson G., Hapke M., Honma A., Jacob F. & Jiminez M.
(1998)
Nuclear Instruments & Methods In Physics Research Section A-Accelerators Spectrometers Detectors And Associated Equipment.
403,
2-3,
p. 326-350
The OPAL experiment at the CERN LEP collider recently increased the geometrical acceptance of its silicon microvertex detector. The azimuthal coverage is improved by adding one pair of detector modules to each of the two layers, while the polar angle coverage is extended by adding new detector modules in line with the existing ones. This improves the efficiency for high quality tracking in OPAL and in particular for b quark tagging in Higgs boson searches. A description of the detector is given, with emphasis on new or modified elements with respect to the earlier version. Results on the performance of the new detector are presented.
Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1998)
European Physical Journal C.
5,
1,
p. 1-17
In e+e- collisions at centre-of-mass energies around 91 GeV, D *0 mesons have been reconstructed using data collected with the OPAL detector at LEP. The hadronisation fraction has been measured to be f (c → D *0) = 0.218 ± 0.054 ± 0.045 ± 0.007, where the errors correspond to the statistical and systematic errors specific to this analysis, and to systematic uncertainties from externally measured branching fractions, respectively. Together with previous OPAL measurements of the hadronisation fractions of other charmed mesons, this value is used to investigate the relative production of observed vector and pseudoscalar charmed mesons in Z0 → cc̄ decays. The production ratio is determined to be Pveff = V/(V+P) = 0.57 ± 0.05 . The relative primary production of vector and pseudoscalar mesons, Pvprim, is studied in the context of the production and decay of orbitally excited charmed resonances. The first measurement of the inclusive Ds *+ production rate in hadronic Z0 decays is presented.
Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1998)
European Physical Journal C.
5,
3,
p. 379-388
An investigation of CP violation was performed using a total of 24 candidates for B0 → J/ψK0S decay, with a purity of about 60%. These events were selected from 4.4 million hadronic Z0 decays recorded by the OPAL detector at LEP. An analysis procedure, involving techniques to reconstruct the proper decay times and tag the produced b-flavours, B0 or B̄0, has been developed to allow a first direct study of the time dependent CP asymmetry that, in the Standard Model, is sin 2β. The result is sin 2β = 3.2+1.8-2.0 ± 0.5 where the first error is statistical and the second systematic. This result is used to determine probabilities for different values of sin 2β in the physical region from -1 to +1.
Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1998)
European Physical Journal C.
5,
2,
p. 229-237
An upper limit for the τ-neutrino mass has been determined from the decay τ → 5π±vτ using data collected with the OPAL detector from 1991 to 1995 in e+e- collisions at √s ≈ Mz. A limit of 43.2 MeV at 95% CL is obtained using a two-dimensional method in the 5π invariant mass and energy distribution from 22 selected events. Combining this result with OPAL's previously published measurement using τ+ τ- → 3h±v̄τ + 3h∓vτ decays, a new combined limit of mvτ < 27.6 MeV (95% CL) is obtained.
Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barbeiro E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1998)
European Physical Journal C.
4,
1,
p. 19-28
Inclusive production of the f0(980), f2(1270) and φ(1020) resonances has been studied in a sample of 4.3 million hadronic Z0 decays from the OPAL experiment at LEP. A coupled channel analysis has been used for the f0 in simultaneous fits to the resonances in inclusive π+π- and K+K- mass spectra. Fragmentation functions are reported for the three states. Total inclusive rates are measured to be 0.141 ± 0.007 ± 0.011 f0, 0.155 ± 0.011 ± 0.018 f2 and 0.091 ± 0.002 ± 0.003 φ mesons per hadronic Z0 decay. The production properties of the f0, including those in three-jet events, are compared with those of the f2 and φ, and with the Lund string model of hadron production. All measurements are consistent with the hypothesis that the f0(980) is a conventional qq̄ scalar meson.
Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Beeston C., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1998)
European Physical Journal C.
4,
2,
p. 193-206
The branching ratios of the τ- → h- ντ, τ- → h- π0ντ and τ- → h- ≥ 2π0ντ decays have been measured using the 1991-1995 data recorded with the OPAL detector at LEP. These branching ratios are measured simultaneously using three selection criteria and are found to be BR(τ- → h- ντ) = (11.98 ± 0.13 ± 0.16)% BR(τ- → h- π0ντ) = (25.89 ± 0.17 ± 0.29)% BR(τ- → h- ≥ 2π0ντ) = (9.91 ± 0.31 ± 0.27)% where the first error is statistical and the second is systematic.
Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Beeston C., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1998)
European Physical Journal C.
2,
3,
p. 441-472
Production of events with hadronic and leptonic final states has been measured in e+e- collisions at centre-of-mass energies of 130-172 GeV, using the OPAL detector at LEP. Cross-sections and leptonic forward-backward asymmetries are presented, both including and excluding the dominant production of radiative Zγ events, and compared to Standard Model expectations. The ratio Rb of the cross-section for bb̄ production to the hadronic cross-section has been measured. In a model-independent fit to the Z lineshape, the data have been used to obtain an improved precision on the measurement of γ-Z interference. The energy dependence of αem has been investigated. The measurements have also been used to obtain limits on extensions of the Standard Model described by effective four-fermion contact interactions, to search for t-channel contributions from new massive particles and to place limits on gaugino pair production with subsequent decay of the gaugino into a light gluino and a quark pair.
Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Beeston C., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1998)
European Physical Journal C.
1,
1-2,
p. 45-64
We have searched for unstable neutral and charged heavy leptons, N and L± and for excited states of neutral and charged leptons, ν*, e*, μ*, and τ*, in e+e- collisions at centre-of-mass energies of 170 and 172 GeV using the OPAL detector at LEP. No evidence for their existence was found From the analysis of charged-current decays of pair-produced unstable heavy leptons, and of charged-current and photonic decays of pair-produced excited leptons, lower limits on their masses are derived From the analysis of charged-current and photonic decays of singly-produced excited leptons, upper limits on the ratio of the coupling to the compositeness scale, f/Λ, are determined for masses up to the kinematic limit.
Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Beeston C., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1998)
European Physical Journal C.
2,
4,
p. 607-625
Photonic events with large missing energy have been observed in e+e- collisions at centre-of-mass energies of 130, 136, 161 and 172 GeV using the OPAL detector at LEP. Results are presented based on search topologies designed to select events with a single photon and missing transverse energy or events with a pair of acoplanar photons. In both search topologies, cross-section measurements are performed within the kinematic acceptance of the selection. These results are compared with the expectations from the Standard Model processes e+e- → vv̄γ(γ) (single-photon) and e+e- → vv̄γγ(γ) (acoplanar-photons). No evidence is observed for new physics contributions to these final states. Upper limits on σ(e+e- → XY) · BR(X → Yγ) and σ(e+e- → XX) · BR2(X → Yγ) are derived for the case of stable and invisible Y. These limits apply to single and pair production of excited neutrinos (X = v*, Y = v), to neutralino production (X = χ̃02, Y = χ̃01), and to supersymmetric models in which X = χ̃01 and Y = G̃ is a light gravitino. For the latter scenario, the results of the acoplanar-photons search are used to provide model-dependent lower limits on the mass of the lightest neutralino.
Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Axen D., Azuelos G., Ball A., Barberio E., Barillari T., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Beeston C., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1998)
European Physical Journal C.
1,
3-4,
p. 439-459
The production rates of D*± mesons in charm and bottom events at centre-of-mass energies of about 91 GeV and the partial width of primary cc̄ pairs in hadronic Z0 decays have been measured at LEP using almost 4.4 million hadronic Z0 decays collected with the OPAL detector between 1990 and 1995. Using a combination of several charm quark tagging methods based on fully and partially reconstructed D*± mesons, and a bottom tag based on identified muons and electrons, the hadronisation fractions of charm and bottom quarks into D*± mesons have been found to be f (b → D*+X) = 0.173 ± 0.016 ± 0.012 and f (c → D*+X) = 0.222 ± 0.014 ± 0.014. The fraction of cc̄ events in hadronic Z0 decays, Γcc̄/Γhad = Γ(Z0 → cc̄)/Γ(Z0 → hadrons), is determined to be Γcc̄/Γhad = 0.180 ± 0.011 ± 0.012 ± 0.006. In all cases the first error is statistical, and the second one systematic. The last error quoted for Γcc̄/Γhad is due to external branching ratios.
Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1998)
European Physical Journal C.
5,
2,
p. 239-248
Bose-Einstein Correlations (BEC) of three identical charged pions were studied in 4 × 106 hadronic Z0 decays recorded with the OPAL detector at LEP. The genuine three-pion correlations, corrected for the Coulomb effect, were separated from the known two-pion correlations by a new subtraction procedure. A significant genuine three-pion BEC enhancement near threshold was observed having an emitter source radius of r3 = 0.580 ± 0.004 (stat.) ± 0.029 (syst.) fm and a strength of λ3 = 0.504 ± 0.010 (stat.) ± 0.041 (syst.). The Coulomb correction was found to increase the λ3 value by ∼ 9% and to reduce r3 by ∼ 6%. The measured λ3 corresponds to a value of 0.707 ± 0.014 (stat.) ± 0.078 (syst.) when one takes into account the three-pion sample purity. A relation between the two-pion and the three-pion source parameters is discussed.
Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Beeston C., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1998)
European Physical Journal C.
1,
1-2,
p. 21-30
The process e+e- → γγ(γ) is studied using data recorded with the OPAL detector at LEP. The data sample corresponds to a total integrated luminosity of 25.38 pb-1 taken at centre-of-mass energies of 130-172 GeV. The measured cross-sections agree well with the expectation from QED. In a combined fit using data from all centre-of-mass energies, the angular distribution is used to obtain improved limits on the cut-off parameters: A+ > 195 GeV and A_ > 210 GeV (95% CL). In addition, limits on non-standard e+e-γ couplings and contact interactions, as well as a 95% CL mass limit for an excited electron, Me* > 194 GeV for an e+e-γ coupling κ = 1, are determined.
Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Beeston C., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1998)
European Physical Journal C.
1,
1-2,
p. 31-43
A search for the resonant production of high mass photon pairs associated with a leptonic or hadronic system has been performed using a total data sample of 25.7 pb-1 taken at centre-of-mass energies between 130 GeV and 172 GeV with the OPAL detector at LEP. The observed number of events is consistent with the expected number from Standard Model processes. The observed candidates are combined with search results from √s ≈ Mz to place limits on B(H0 → γγ) within the Standard Model for Higgs boson masses up to 77 GeV, and on the production cross section of any scalar resonance decaying into di-photons. Upper limits on B(H0 → γγ) × σ(e+e- → H0Z0) of 290 - 830 fb are obtained over 40 < MH < 160 GeV. Higgs scalars which couple only to gauge bosons with Standard Model strength are ruled out up to a mass of 76.5 GeV at the 95% confidence level.
Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Beeston C., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1998)
European Physical Journal C.
1,
3-4,
p. 395-424
This paper describes the measurement of the W boson mass, MW, and decay width, ΓW, from the direct reconstruction of the invariant mass of its decay products in W pair events collected at a mean centre-of-mass energy of √s=172.12 GeV with the OPAL detector at LEP. Measurements of the W pair production cross-section, the W decay branching fractions and properties of the W decay final states are also described. A total of 120 candidate W+W- events has been selected for an integrated luminosity of 10.36 pb-1. The W+W- production cross-section is measured to be σWW = 12.3 ± 1.3(stat.)± 0.3 (syst.) pb, consistent with the Standard Model expectation. The W+W- → qqℓvℓ and W+W- → qqqq final states are used to obtain a direct measurement of ΓW = 1.30+0.70-0.55 (stat.) ± 0.18 (syst.) GeV. Assuming the Standard Model relation between MW and ΓW, the W boson mass is measured to be MW = 80.32 ± 0.30(stat.) ± 0.09(syst.) GeV. The event properties of the fully-hadronic decays of W+W- events are compared to those of the semileptonic decays. At the current level of precision there is no evidence for effects of colour reconnection in the observables studied. Combining data recorded by OPAL at √s ∼ 161-172 GeV, the W boson branching fraction to hadrons is determined to be 69.8+3.0-3.2 (stat.) ± 0.7 (syst.)%, consistent with the prediction of the Standard Model. The combined mass measurement from direct reconstruction and from the W+W- production cross-sections measured at √s ∼ 161 and √s ∼ 172 GeV is MW = 80.35 ± 0.24 (stat.) ± 0.07(syst.) GeV.
Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Beeston C., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1998)
European Physical Journal C.
2,
1,
p. 49-59
The longitudinal polarization, the transverse polarization, and the forward-backward asymmetry of Λ baryons, have been measured using a sample of 4.34 million hadronic Z0 decays collected with the OPAL detector at LEP between 1990 and 1995. These results are important as an aid to the understanding of hadronizatiou mechanisms. Significant longitudinal polarization has been observed at intermediate and high momentum. For xE (= 2EΛ/√s) > 0.3, the longitudinal polarization has been measured to be -32.9 ± 5.5 (stat) ± 5.2 (syst)%. We have observed no transverse polarization. A significant forward-backward asymmetry has been measured and can be described by a JETSET model.
Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1998)
European Physical Journal C.
5,
1,
p. 19-40
A search is described for the neutral Higgs bosons h0 and A0 predicted by models with two scalar field doublets and, in particular, the Minimal Supersymmetric Standard Model (MSSM). The search in the Z0h0 and h0A0 production channels is based on data corresponding to an integrated luminosity of 25 pb-1 from e+e- collisions at centre-of-mass energies between 130 and 172 GeV collected with the OPAL detector at LEP. The observation of a number of candidates consistent with Standard Model background expectations is used in combination with earlier results from data collected at the Z0 resonance to set limits on mh and mA in general models with two scalar field doublets and in the MSSM. For example, in the MSSM, for tan β > 1, minimal and maximal scalar top quark mixing and soft SUSY-breaking masses of 1 TeV, the 95% confidence level limits mh > 59.0 GeV and mA > 59.5 GeV are obtained. For the first time, the MSSM parameter space is explored in a detailed scan.
Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Beeston C., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1998)
European Physical Journal C.
4,
1,
p. 47-74
Events containing two charged leptons and significant missing transverse momentum are selected from a data sample corresponding to a total integrated luminosity of 20.6 pb-1 at centre-of-mass energies of 161 GeV and 172 GeV. The observed number of events, four at 161 GeV and nine at 172 GeV, is consistent with the number expected from Standard Model processes, predominantly arising from W+W-1 production with each W decaying leptonically. This topology is also an experimental signature for the pair production of new particles that decay to a charged lepton accompanied by one or more invisible particles Further event selection criteria are described that optimise the sensitivity to particular new physics channels No evidence for new phenomena is observed and limits on the production of scalar charged lepton pairs and other new particles are presented.
Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Beeston C., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1998)
European Physical Journal C.
2,
4,
p. 597-606
We present measurements of triple gauge boson coupling parameters using data recorded by the OPAL detector at LEP2 at a centre-of-mass energy of 172 GeV. A total of 120 W-pair candidates has been selected in the qq̄qq̄, qq̄ℓv̄ℓ and ℓv̄ℓℓ̄vℓ decay channels, for an integrated luminosity of 10.4 pb-1. We use these data to determine several different anomalous coupling parameters using the measured cross-section and the distributions of kinematic variables. We measure αΒφ=0.35 +1.29-1.07 ± 0.38, αWφ=0.00+0.30-0.28 ± 0.11, αW = 0.18+0.49-0.47 ± 0.23, Δgz1=-0.03+0.40-0.37 ± 0.14, Δκ(H1SZ)γ = 0.03+0.55-0.51 ± 0.20, and Δκ=0.03+0.49-0.46 ± 0.21. Combining the αWφ result with our previous result obtained from the 161 GeV data sample we measure αWφ=-0.08+0.28-0.25 ± 0.10. All of these measurements are consistent with the Standard Model.
Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Beeston C., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1998)
European Physical Journal C.
1,
3-4,
p. 425-438
This paper describes a search for the Standard Model Higgs boson using data from e+e- collisions collected at center-of-mass energies of 161, 170 and 172 GeV by the OPAL detector at LEP. The data collected at these energies correspond to integrated luminosities of 10.0, 1.0 and 9.4 pb-1, respectively. The search is sensitive to the main final states from the process in which the Higgs boson is produced in association with a fermion anti-fermion pair, namely four jets, two jets with missing energy, and two jets produced together with a pair of electron, muon or tau leptons. One candidate event is observed, in agreement with the Standard Model background expectation. In combination with previous OPAL searches at center-of-mass energies close to the Z0 resonance and the revised previous OPAL searches at 161 GeV , we derive a lower limit of 69.4 GeV for the mass of the Standard Model Higgs boson at the 95% confidence level.
Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K., Anderson S., Arcelli S., Asai S., Ashby S., Axen D., Azuelos G., Ball A., Barberio E., Barlow R., Bartoldus R., Batley J., Baumann S., Bechtluft J., Behnke T., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1998)
European Physical Journal C.
5,
3,
p. 411-437
The inclusive production rates and differential cross-sections of photons and mesons with a final state containing photons have been measured with the OPAL detector at LEP. The light mesons covered by the measurements are the π0, η, ρ(770)±, ω(782), η(958) and ao(980)±. The particle multiplicities per hadronic Z0 decay, extrapolated to the full energy range, are: 〈nγ〉 = 20.97 ± 0.02 ± 1.15 〈nπ0〉 = 9.55 ± 0.06 ± 0.75 〈nη〉 = 0.97 ± 0.03 ± 0.11 〈nρ±〉 = 2.40 ± 0.06 ± 0.43 〈nω〉 = 1.04 ± 0.04 ± 0.14 〈nη〉 = 0.14 ± 0.01 ± 0.02 〈na0±〉 = 0.27 ± 0.04 ± 0.10 where the first errors are statistical and the second systematic. In general, the results are in agreement with the predictions of the JETSET and HERWIG Monte Carlo models.
Ackerstaff K., Alexander G., Allison J., Altekamp N., Anderson K. J., Anderson S., Arcelli S., Asai S., Axen D., Azuelos G., Ball A. H., Barberio E., Barlow R. J., Bartoldus R., Batley J. R., Baumann S., Bechtluft J., Beeston C., Behnke T., Bell A. N., Bell K. W., Bella G., Bentvelsen S., Berlich P., Bethke S., Biebel O., Biguzzi A., Bird S. D., Blobel V., Bloodworth I. J., Bloomer J. E., Bobinski M., Bock P., Bonacorsi D., Boutemeur M., Bouwens B. T., Braibant S., Brigliadori L., Brown R. M., Burckhart H. J., Burgard C., Bürgin R., Capiluppi P., Carnegie R. K., Carter A. A., Carter J. R., Chang C. Y., Charlton D. G., Chrisman D., Clarke P. E., Cohen I., Conboy J. E., Cooke O. C., Cuffiani M., Dado S., Dallapiccola C., Dallavalle G. M., De Jong S., Del Pozo L. A., Desch K., Dixit M. S., Do Couto E Silva E., Doucet M., Duchovni E., Duckeck G., Duerdoth I. P., Eatough D., Edwards J. E., Estabrooks P. G., Evans H. G., Evans M., Fabbri F., Fanti M., Faust A. A., Fiedler F., Fierro M., Fischer H. M., Fleck I., Folman R., Fong D. G., Foucher M., Fürtjes A., Futyan D. I., Gagnon P., Gary J. W., Gascon J., Gascon-Shotkin S. M., Geddes N. I., Geich-Gimbel C., Geralis T., Giacomelli G., Giacomelli P., Giacomelli R., Gibson V., Gibson W. R., Gingrich D. M., Glenzinski D., Goldberg J., Goodrick M. J., Gorn W., Grandi C., Gross E., Grunhaus J., Gruwé M., Hajdu C., Hanson G. G., Hansroul M., Hapke M., Hargrove C. K., Hart P. A., Hartmann C., Hauschild M., Hawkes C. M., Hawkings R., Hemingway R. J., Herndon M., Herten G., Heuer R. D., Hildreth M. D., Hill J. C., Hillier S. J., Hilse T., Hobson P. R., Homer R. J., Honma A. K., Horváth D., Howard R., Hutchcroft D. E., Igo-Kemenes P., Imrie D. C., Ingram M. R., Ishii K., Jawahery A., Jeffreys P. W., Jeremie H., Jimack M., Joly A., Jones C. R., Jones G., Jones M., Jost U., Jovanovic P., Junk T. R., Karlen D., Kartvelishvili V., Kawagoe K., Kawamoto T., Keeler R. K., Kellogg R. G., Kennedy B. W., Kirk J., Klier A., Kluth S., Kobayashi T., Kobel M., Koetke D. S., Kokott T. P., Kolrep M., Komamiya S., Kress T., Krieger P., Von Krogh J., Kyberd P., Lafferty G. D., Lahmann R., Lai W. P., Lanske D., Lauber J., Lautenschlager S. R., Layter J. G., Lazic D., Lee A. M., Lefebvre E., Lellouch D., Letts J., Levinson L., Lloyd S. L., Loebinger F. K., Long G. D., Losty M. J., Ludwig J., Macchiolo A., Macpherson A., Mannelli M., Marcellini S., Markus C., Martin A. J., Martin J. P., Martinez G., Mashimo T., Mättig P., McDonald W. J., McKenna J., Mckigney E. A., McMahon T. J., McPherson R. A., Meijers F., Menke S., Merritt F. S., Mes H., Meyer J., Michelini A., Mikenberg G., Miller D. J., Mincer A., Mir R., Mohr W., Montanari A., Mori T., Morii M., Müller U., Nagai K., Nakamura I., Neal H. A., Nellen B., Nisius R., O'Neale S. W., Oakham F. G., Odorici F., Ogren H. O., Oldershaw N. J., Oreglia M. J., Orito S., Pálinkas J., Pásztor G., Pater J. R., Patrick G. N., Patt J., Pearce M. J., Petzold S., Pfeifenschneider P., Pilcher J. E., Pinfold J., Plane D. E., Poffenberger P., Poli B., Posthaus A., Przysiezniak H., Rees D. L., Rigby D., Robertson S., Robins S. A., Rodning N., Roney J. M., Rooke A., Ros E., Rossi A. M., Rosvick M., Routenburg P., Rozen Y., Runge K., Runolfsson O., Ruppel U., Rust D. R., Rylko R., Sachs K., Saeki T., Sarkisyan E. K., Sbarra C., Schaile A. D., Schaile O., Scharf F., Scharff-Hansen P., Schenk P., Schieck J., Schleper P., Schmitt B., Schmitt S., Schöning A., Schröder M., Schultz-Coulon H. C., Schulz M., Schumacher M., Schwick C., Scott W. G., Shears T. G., Shen B. C., Shepherd-Themistocleous C. H., Sherwood P., Siroli G. P., Sittler A., Skillman A., Skuja A., Smith A. M., Snow G. A., Sobie R., Söldner-Rembold S., Springer R. W., Sproston M., Stephens K., Steuerer J., Stockhausen B., Stoll K., Strom D., Szymanski P., Tafirout R., Talbot S. D., Tanaka S., Taras P., Tarem S., Teuscher R., Thiergen M., Thomson M. A., Von Törne E., Towers S., Trigger I., Tsur E., Turcot A. S., Turner-Watson M. F., Utzat P., Van Kooten R., Verzocchi M., Vikas P., Vokurka E. H., Voss H., Wäckerle F., Wagner A., Ward C. P., Ward D. R., Watkins P. M., Watson A. T., Watson N. K., Wells P. S., Wermes N., White J. S., Wilkens B., Wilson G. W., Wilson J. A., Wolf G., Wyatt T. R., Yamashita S., Yekutieli G., Zacek V. & Zer-Zion D.
(1997)
Zeitschrift fur Physik C-Particles and Fields.
76,
p. 425-440
Results are presented on the production of excited charm and excited charm-strange mesons in hadronic Z0 decays. The results are obtained from approximately 4.3 million hadronic Z0 decays, collected on or near the Z0 resonance using the OPAL detector at LEP. The D10(2420) and D*20(2460) mesons are reconstructed in the D*+π- final state and their separate production rates in charm fragmentation and in weak decays of b-hadrons are determined. Assuming that the decay widths of these mesons are saturated by the allowed D*π and Dπ final states, the charm hadronization fractions and the inclusive branching ratios of b-hadrons to these neutral P-wave charm mesons are determined to be f(c → D10) = 0.021 ± 0.007(stat) ± 0.003(syst), f(c → D*20) = 0.052 ± 0.022(stat) ± 0.013(syst), f(b → D10) = 0.050 ± 0.014(stat) ± 0.006(syst), f(b → D*20) = 0.047 ± 0.024(stat) ± 0.013(syst). We also present the first observation at LEP of the Ds1+ (2536) meson which is reconstructed in both the D*+KS0 and D*0K+ final states. After correcting for the expected contribution from bb events, assuming that the D*K channels saturate the available final states, these results are used to derive the charm hadronization fraction f(c → Ds1+): f(c → Ds1+) = 0.016 ± 0.004(stat) ± 0.003(syst).
Gross E.
(1997)
Nuclear Physics B - Proceedings Supplements.
52,
1-2,
p. 3-7
The results of the search for Charginos, Neutralinos, Sleptons and Squarks with the LEP accelerator at 130-136 GeV center-of-mass energy are briefly described.
Alexander G., Allison J., Altekamp N., Ametewee K., Anderson K. J., Anderson S., Arcelli S., Asai S., Axen D., Azuelos G., Ball A. H., Barberio E., Barlow R. J., Bartoldus R., Batley J. R., Bechtluft J., Beeston C., Duchovni E., Gross E. & Levinson L.
(1996)
Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics.
387,
2,
p. 432-442
The differential cross-sections for e+e- → e+e-, e+e- → μ+μ- and e+e- → τ+τ-, and the total cross-section for e+e- → qq̄ at centre-of-mass energies of 130-140 GeV were studied using about 5 pb-1 of data collected with the OPAL detector at LEP in October and November 1995. The results are in agreement with the Standard Model predictions. Four-fermion contact interaction models were fitted to the data and lower limits were obtained on the energy scale A at the 95% confidence level.
Alexander G., Allison J., Altekamp N., Ametewee K., Anderson K., Asai S., Axen D., Azuelos G., Ball A. H., Barberio E., Barlow R. J., Bartoldus R., Batley J. R., Beaudoin G., Bechtluft J., Beeston C., Behnke T., Bell A. N., Bell K. W., Bella G., Bentvelsen S., Berlich P., Bethke S., Biebel O., Blobel V., Bloodworth I. J., Bloomer J. E., Bock P., Bosch H. M., Boutemeur M., Bouwens B. T., Braibant S., Brown R. M., Burckhart H. J., Burgard C., Bürgin R., Capiluppi P., Carnegie R. K., Carter A. A., Carter J. R., Chang C. Y., Charlesworth C., Charlton D. G., Chrisman D., Chu S. L., Clarke P. E., Cohen I., Conboy J. E., Cooke O. C., Cuffiani M., Dado S., Dallapiccola C., Dallavalle G. M., de Jong S., del Pozo L. A., Desch K., Dixit M. S., do Couto e Silva E., Doucet M., Duchovni E., Duckeck G., Duerdoth I. P., Edwards J. E., Estabrooks P. G., Evans H. G., Evans M., Fabbri F., Fath P., Fiedler F., Fierro M., Fischer H. M., Folman R., Fong D. G., Foucher M., Fukui H., Fürtjes A., Gagnon P., Gaidot A., Gary J. W., Gascon J., Gascon-Shotkin S. M., Geddes N. I., Geich-Gimbel C., Gentit F. X., Geralis T., Giacomelli G., Giacomelli P., Giacomelli R., Gibson V., Gibson W. R., Gingrich D. M., Goldberg J., Goodrick M. J., Gorn W., Grandi C., Gross E., Gruwé M., Hajdu C., Hanson G. G., Hansroul M., Hapke M., Hargrove C. K., Hart P. A., Hartmann C., Hauschild M., Hawkes C. M., Hawkings R., Hemingway R. J., Herten G., Heuer R. D., Hildreth M. D., Hill J. C., Hillier S. J., Hilse T., Hoare J., Hobson P. R., Homer R. J., Honma A. K., Horváth D., Howard R., Hughes-Jones R. E., Hutchcroft D. E., Igo-Kemenes P., Imrie D. C., Ingram M. R., Jawahery A., Jeffreys P. W., Jeremie H., Jimack M., Joly A., Jones C. R., Jones G., Jones M., Jones R. W., Jost U., Jovanovic P., Junk T. R., Karlen D., Kawagoe K., Kawamoto T., Keeler R. K., Kellogg R. G., Kennedy B. W., King B. J., Kirk J., Kluth S., Kobayashi T., Kobel M., Koetke D. S., Kokott T. P., Komamiya S., Kowalewski R., Kress T., Krieger P., von Krogh J., Kyberd P., Lafferty G. D., Lafoux H., Lahmann R., Lai W. P., Lanske D., Lauber J., Lautenschlager S. R., Layter J. G., Lazic D., Lee A. M., Lefebvre E., Lellouch D., Letts J., Levinson L., Lewis C., Lloyd S. L., Loebinger F. K., Long G. D., Losty M., Ludwig J., Luig A., Malik A., Mannelli M., Marcellini S., Markus C., Martin A. J., Martin J. P., Martinez G., Mashimo T., Matthews W., Mättig P., McDonald W. J., McKenna J., Mckigney E. A., McMahon T. J., McNab A. I., McPherson R. A., Meijers F., Menke S., Merritt F. S., Mes H., Meyer J., Michelini A., Mikenberg G., Miller D. J., Mir R., Mohr W., Montanari A., Mori T., Morii M., Müller U., Neal H. A., Nellen B., Nijjhar B., Nisius R., O'Neale S. W., Oakham F. G., Odorici F., Ogren H. O., Omori T., Oreglia M. J., Orito S., Pálinkás J., Pansart J. P., Pásztor G., Pater J. R., Patrick G. N., Pearce M. J., Petzold S., Pfeifenschneider P., Pilcher J. E., Pinfold J., Plane D. E., Poffenberger P., Poli B., Posthaus A., Przysiezniak H., Rees D. L., Rigby D., Robins S. A., Rodning N., Roney J. M., Rooke A., Ros E., Rossi A. M., Rosvick M., Routenburg P., Rozen Y., Runge K., Runolfsson O., Ruppel U., Rust D. R., Rylko R., Sarkisyan E. K., Sasaki M., Sbarra C., Schaile A. D., Schaile O., Scharf F., Scharff-Hansen P., Schenk P., Schmitt B., Schmitt S., Schroder M., Schultz-Coulon H. C., Schulz M., Schütz P., Scott W. G., Shears T. G., Shen B. C., Shepherd-Themistocleous C. H., Sherwood P., Siroli G. P., Sittler A., Skillman A., Skuja A., Smith A. M., Smith T. J., Snow G. A., Sobie R., Söldner-Rembold S., Springer R. W., Sproston M., Stahl A., Starks M., Steiert M., Stephens K., Steuerer J., Stockhausen B., Strom D., Strumia F., Szymanski P., Tafirout R., Talbot S. D., Tanaka S., Taras P., Tarem S., Tecchio M., Thiergen M., Thomson M. A., von Törne E., Towers S., Tscheulin M., Tsukamoto T., Tsur E., Turcot A. S., Turner-Watson M. F., Utzat P., van Kooten R., Vasseur G., Verzocchi M., Vikas P., Vincter M., Vokurka E. H., Wäckerle F., Wagner A., Ward C. P., Ward D. R., Ward J. J., Watkins P. M., Watson A. T., Watson N. K., Weber P., Wells P. S., Wermes N., White J. S., Wilkens B., Wilson G. W., Wilson J. A., Wlodek T., Wolf G., Wotton S., Wyatt T. R., Yamashita S., Yekutieli G. & Zacek V.
(1996)
Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics.
384,
1-4,
p. 377-387
The spin composition of ΛΛ̄, ΛΛ and Λ̄Λ̄ pairs at low invariant mass values has been measured for the first time in multihadronic Z0 decays with the OPAL detector at LEP. No single spin state has been observed in the ΛΛ̄ sample, verifying that the low mass enhancement in this sample, attributed to local baryon number compensation, is not a resonance state. The fraction of the spin 1 contribution to the ΛΛ̄ pairs was found to be consistent with the value 0.75, as expected from a statistical spin mixture. This may be the net effect of many different QCD processes which contribute to the hyperon anti-hyperon pair production. The spin composition of the identical ΛΛ and Λ̄Λ̄ pairs, well above threshold, is found to be similar to that of the ΛΛ̄ sample. A ΛΛ emitter dimension is estimated from the data assuming the onset of the Pauli exclusion principle near threshold.
Alexander G., Allison J., Altekamp N., Ametewee K., Anderson K. J., Anderson S., Arcelli S., Asai S., Axen D., Azuelos G., Ball A. H., Barberio E., Barlow R., Bartoldus R., Batley J. R., Beaudoin G., Bechtluft J., Beeston C., Behnke T., Bell A. N., Bell K. W., Bella G., Bentvelsen S., Berlich P., Bethke S., Biebel O., Blobel V., Bloodworth I. J., Bloomer J. E., Bock P., Bosch H. M., Boutemeur M., Bouwens B. T., Braibant S., Brown R. M., Burckhart H. J., Burgard C., Bürgin R., Capiluppi P., Carnegie R. K., Carter A. A., Carter J. R., Chang C. Y., Charlesworth C., Charlton D. G., Chrisman D., Chu S. L., Clarke P. E., Cohen I., Conboy J. E., Cooke O. C., Cuffiani M., Dado S., Dallapiccola C., Dallavalle G. M., de Jong S., del Pozo L. A., Desch K., Dixit M. S., do Couto e Silva E., Doucet M., Duchovni E., Duckeck G., Duerdoth I. P., Edwards J. E., Estabrooks P. G., Evans H. G., Evans M., Fabbri F., Fath P., Fiedler F., Fierro M., Fischer H. M., Folman R., Fong D. G., Foucher M., Fukui H., Fürtjes A., Gagnon P., Gaidot A., Gary J. W., Gascon J., Gascon-Shotkin S. M., Geddes N. I., Geich-Gimbel C., Gentit F. X., Geralis T., Giacomelli G., Giacomelli P., Giacomelli R., Gibson V., Gibson W. R., Gingrich D. M., Goldberg J., Goodrick M. J., Gorn W., Grandi C., Gross E., Gruwé M., Hajdu C., Hanson G. G., Hansroul M., Hapke M., Hargrove C. K., Hart P. A., Hartmann C., Hauschild M., Hawkes C. M., Hawkings R., Hemingway R. J., Herten G., Heuer R. D., Hildreth M. D., Hill J. C., Hillier S. J., Hilse T., Hoare J., Hobson P., Homer R. J., Honrna A. K., Horváth D., Howard R., Hughes-Jones R. E., Hutchcroft D. E., Igo-Kemenes P., Imrie D. C., Ingram M. R., Jawahery A., Jeffreys P. W., Jeremie H., Jimack M., Joly A., Jones C. R., Jones G., Jones M., Jones R. W., Jost U., Jovanovic P., Junk T. R., Karlen D., Kawagoe K., Kawamoto T., Keeler R. K., Kellogg R. G., Kennedy B. W., King B., Kirk J., Kluth S., Kobayashi T., Kobe M., Koetke D. S., Kokott T. P., Komamiya S., Kowalewski R., Kress T., Krieger P., von Krogh J., Kyberd P., Lafferty G. D., Lafoux H., Lahmann R., Lai W. P., Lanske D., Lauber J., Lautenschlager S. R., Layter J. G., Lazic D., Lee A. M., Lefebvre E., Lellouch D., Letts J., Levinson L., Lewis C., Lloyd S. L., Loebinger F. K., Long G. D., Losty M. J., Ludwig J., Luig A., Malik A., Mannelli M., Marcellini S., Markus C., Martin A. J., Martin J. P., Martinez G., Mashimo T., Matthews W., Mättig P., McDonald W. J., McKenna J., Mckigney E. A., McMahon T., McNab A. I., McPherson R. A., Meijers F., Menke S., Merritt F. S., Mes H., Meyer J., Michelini A., Mikenberg G., Miller D. J., Mir R., Mohr W., Montanari A., Mori T., Morii M., Müller U., Neal H. A., Nellen B., Nijjhar B., Nisius R., O'Neale S. W., Oakham F. G., Odorici F., Ogren H. O., Omori T., Oreglia M. J., Orito S., Pálinkás J., Pansart J. P., Pásztor G., Pater J. R., Patrick G. N., Pearce M. J., Petzold S., Pfeifenschneider P., Pilcher J. E., Pinfold J., Plane D. E., Poffenberger P., Poli B., Posthaus A., Przysiezniak H., Rees D. L., Rigby D., Robins S. A., Rodning N., Roney J. M., Rooke A., Ros E., Rossi A. M., Rosvick M., Routenburg P., Rozen Y., Runge K., Runolfsson O., Ruppel U., Rust D. R., Rylko R., Sarkisyan E. K., Sasaki M., Sbarra C., Schaile A. D., Schaile O., Scharf F., Scharff-Hansen P., Schenk P., Schmitt B., Schmitt S., Schroder M., Schultz-Coulon H. C., Schulz M., Schütz P., Scott W. G., Shears T. G., Shen B. C., Shepherd-Themistocleous C. H., Sherwood P., Siroli G. P., Sittler A., Skillman A., Skuja A., Smith A. M., Smith T. J., Snow G. A., Sobie R., Söldner-Rembold S., Springer R. W., Sproston M., Stahl A., Starks M., Steiert M., Stephens K., Steuerer J., Stockhausen B., Strom D., Strumia F., Szymanski P., Tafirout R., Talbot S. D., Tanaka S., Taras P., Tarem S., Tecchio M., Thiergen M., Thomson M. A., von Törne E., Towers S., Tscheulin M., Tsukamoto T., Tsur E., Turcot A. S., Turner-Watson M. F., Utzat P., van Kooten R., Vasseur G., Verzocchi M., Vikas P., Vincter M., Vokurka E. H., Wäckerle F., Wagner A., Ward C. P., Ward D. R., Ward J. J., Watkins P. M., Watson A. T., Watson N. K., Weber P., Wells P. S., Werrnes N., White J. S., Wilkens B., Wilson G. W., Wilson J. A., Wlodek T., Wolf G., Wotton S., Wyatt T. R., Yamashita S., Yekutieli G. & Zacek V.
(1996)
Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics.
384,
1-4,
p. 343-352
Evidence is presented for the production of prompt J/ψ mesons (not originating in b-hadron decays) in hadronic Z0 decays. Using a sample of 3.6 million hadronic events, 24 prompt J/ψ candidates are identified from their decays into e+e- and μ+μ- pairs. The background is estimated to be 10.2±2.0 events. The following branching ratio for prompt J/ψ production is obtained: Br(Z0 → prompt J/ψ + X) = (1.9 ± 0.7 ± 0.5 ± 0.5) · 10-4, where the first error is statistical, the second systematic and the third error accounts for uncertainties in the prompt J/ψ production mechanism.
Alexander G., Allison J., Altekamp N., Ametewee K., Anderson K. J., Anderson S., Arcelli S., Asai S., Axen D., Azuelos G., Ball A. H., Barberio E., Barlow R. J., Bartoldus R., Batley J. R., Beaudoin G., Bechtluft J., Beeston C., Bebnke T., Bell A. N., Bell K. W., Bella G., Bentvelsen S., Berlich P., Bethke S., Biebel O., Blobel V., Bloodworth I. J., Bloomer J. E., Bock P., Bosch H. M., Boutemeur M., Bouwens B. T., Braibant S., Brown R. M., Burckhart H. J., Burgard C., Büirgin R., Capiluppi P., Carnegie R. K., Carter A. A., Carter J. R., Chang C. Y., Charlesworth C., Charlton D. G., Chrisman D., Chu S. L., Clarke P. E., Cohen I., Conboy J. E., Cooke O. C., Cuffiani M., Dado S., Dallapiccola C., Dallavalle G. M., De Jong S., Del Pozo L. A., Desch K., Dixit M. S., Do Couto E Silva E., Doucet M., Duchovni E., Duckeck G., Duerdoth I. P., Edwards J. E., Estabrooks P. G., Evans H. G., Evans M., Fabbri F., Fath P., Fiedler F., Fierro M., Fischer H. M., Folman R., Fong D. G., Foucher M., Fukui H., Füirtjes A., Gagnon P., Gaidot A., Gary J. W., Gascon J., Gascon-Shotkin S. M., Geddes N. I., Geich-Gimbel C., Gentit F. X., Geralis T., Giacomelli G., Giacomelli P., Giacomelli R., Gibson V., Gibson W. R., Gingrich D. M., Goldberg J., Goodrick M. J., Gorn W., Grandi C., Gross E., Gruwé M., Hajdu C., Hanson G. G., Hansroul M., Hapke M., Hargrove C. K., Hart P. A., Hartmann C., Hauschild M., Hawkes C. M., Hawkings R., Hemingway R. J., Herten G., Heuer R. D., Hildreth M. D., Hill J. C., Hillier S. J., Hilse T., Hoare J., Hobson P. R., Homer R. J., Honma A. K., Horváth D., Howard R., Hughes-Jones R. E., Hutchcroft D. E., Igo-Kemenes P., Imrie D. C., Ingram M. R., Jawahery A., Jeffreys P. W., Jeremie H., Jimack M., Joly A., Jones C. R., Jones G., Jones M., Jones R. W., Jost U., Jovanovic P., Junk T. R., Karlen D., Kawagoe K., Kawamoto T., Keeler R. K., Kellogg R. G., Kennedy B. W., King B. J., Kirk J., Klutb S., Kobayashi T., Kobel M., Koetke D. S., Kokott T. P., Komamiya S., Kowalewski R., Kress T., Krieger P., Von Krogh J., Kyberd P., Lafferty G. D., Lafoux H., Lahmann R., Lai W. P., Lanske D., Lauber J., Lautenschlager S. R., Layter J. G., Lazic D., Lee A. M., Lefebvre E., Lellouch D., Letts J., Levinson L., Lewis C., Lloyd S. L., Loebinger F. K., Long G. D., Losty M. J., Ludwig J., Luig A., Malik A., Mannelli M., Marcellini S., Markus C., Martin A. J., Martin J. P., Martinez G., Mashimo T., Matthews W., Mäittig P., McDonald W. J., McKenna J., Mckigney E. A., McMahon T. J., McNab A. I., McPherson R. A., Meijers F., Menke S., Merritt F. S., Mes H., Meyer J., Michelini A., Mikenberg G., Miller D. J., Mir R., Mohr W., Montanari A., Mori T., Morii M., Müllers U., Neal H. A., Nellen B., Nijjhar B., Nisius R., O'Neale S. W., Oakham F. G., Odorici F., Ogren H. O., Omori T., Oreglia M. J., Orito S., Pálinkás J., Pansart J. P., Pasztor G., Pater J. R., Patrick G. N., Pearce M. J., Petzold S., Pfeifenschneider P., Pilcher J. E., Pinfold J., Plane D. E., Poffenberger P., Poli B., Posthaus A., Przysiezniak H., Rees D. L., Rigby D., Robins S. A., Rodning N., Roney J. M., Rooke A., Ros E., Rossi A. M., Rosvick M., Routenburg P., Rozen Y., Runge K., Runolfsson O., Ruppel U., Rust D. R., Rylko R., Sarkisyan E. K., Sasaki M., Sbarra C., Schaile A. D., Schaile O., Scharf F., Scharff-Hansen P., Schenk P., Schmitt B., Schmitt S., Schröder M., Schultz-Coulon H. C., Schulz M., Schüitz P., Scott W. G., Shears T. G., Shen B. C., Shepherd-Themistocleous C. H., Sherwood P., Siroli G. P., Sittler A., Skillman A., Skuja A., Smith A. M., Smith T. J., Snow G. A., Sobie R., Söldner-Rembold S., Springer R. W., Sproston M., Stahl A., Starks M., Steiert M., Stephens K., Steuerer J., Stockhausen B., Strom D., Strumia F., Szymanski P., Tafirout R., Talbot S. D., Tanaka S., Taras P., Tarem S., Tecchio M., Thiergen M., Thomson M. A., Von Törne E., Towers S., Tscheulin M., Tsukamoto T., Tsur E., Turcot A. S., Turner-Watson M. F., Utzat P., Van Kooten R., Vasseur G., Verzocchi M., Vikas P., Vincter M., Vokurka E. H., Wäckerle F., Wagner A., Ward C. P., Ward D. R., Ward J. J., Watkins P. M., Watson A. T., Watson N. K., Weber P., Wells P. S., Wermes N., White J. S., Wilkens B., Wilson G. W., Wilson J. A., Wlodek T., Wolf G., Wotton S., Wyatt T. R., Yamashita S., Yekutieli G. & Zacek V.
(1996)
Zeitschrift fur Physik C-Particles and Fields.
72,
p. 191-206
We have studied hadronic events produced at LEP at centre-of-mass energies of 130 and 136 GeV. Distributions of event shape observables, jet rates, momentum spectra and multiplicities are presented and compared to the predictions of several Monte Carlo models and analytic QCD calculations. From fits of event shape and jet rate distributions to δ(α s2])+NLLA QCD calculations, we determine αs(133 GeV)= 0.110±0.005(stat.)±0.009(syst.). We measure the mean charged particle multiplicity 〈(nch)〈 = 23.40±0.45(stat.)±0.47(syst.) and the position ζ0 of the peak in the ζp = ln(1/xp) distribution ζ0 = 3.94±0.05(stat.)±0.1 l(syst.). These results are compared to lower energy data and to analytic QCD or Monte Carlo predictions for their energy evolution.
Alexander G., Allison J., Altekamp N., Ametewee K., Anderson K. J., Anderson S., Arcelli S., Asai S., Axen D., Azuelos G., Ball A. H., Barberio E., Barlow R. J., Bartoldus R., Batley J. R., Beaudoin G., Bechtluft J., Beeston C., Behnke T., Bell A. N., Bell K. W., Bella G., Bentvelsen S., Berlich P., Bethke S., Biebel O., Blobel V., Bloodworth I. J., Bloomer J. E., Bock P., Bosch H. M., Boutemeur M., Bouwens B. T., Braibant S., Brown R. M., Burckhart H. J., Burgard C., Bürgin R., Capiluppi P., Carnegie R. K., Carter A. A., Carter J. R., Chang C. Y., Charlesworth C., Charlton D. G., Chrisman D., Chu S. L., Clarke P. E., Cohen I., Conboy J. E., Cooke O. C., Cuffiani M., Dado S., Dallapiccola C., Dallavalle G. M., De Jong S., Del Pozo L. A., Desch K., Dixit M. S., Do Couto E Silva E., Doucet M., Duchovni E., Duckeck G., Duerdoth I. P., Edwards J. E., Estabrooks P. G., Evans H. G., Evans M., Fabbri F., Fath P., Fiedler F., Fierro M., Fischer H. M., Folman R., Fong D. G., Foucher M., Fukui H., Fürtjes A., Gagnon P., Gaidot A., Gary J. W., Gascon J., Gascon-Shotkin S. M., Geddes N. I., Geich-Gimbel C., Gentit F. X., Geralis T., Giacomelli G., Giacomelli P., Giacomelli R., Gibson V., Gibson W. R., Gingrich D. M., Goldberg J., Goodrick M. J., Gorn W., Grandi C., Gross E., Gruwé M., Hajdu C., Hanson G. G., Hansroul M., Hapke M., Hargrove C. K., Hart P. A., Hartmann C., Hauschild M., Hawkes C. M., Hawkings R., Hemingway R. J., Herten G., Heuer R. D., Hildreth M. D., Hill J. C., Hillier S. J., Hilse T., Hoare J., Hobson P. R., Homer R. J., Honma A. K., Horváth D., Howard R., Hughes-Jones R. E., Hutchcroft D. E., Igo-Kemenes P., Imrie D. C., Ingram M. R., Jawahery A., Jeffreys P. W., Jeremie H., Jimack M., Joly A., Jones C. R., Jones G., Jones M., Jones R. W., Jost U., Jovanovic P., Junk T. R., Karlen D., Kawagoe K., Kawamoto T., Keeler R. K., Kellogg R. G., Kennedy B. W., King B. J., Kirk J., Kluth S., Kobayashi T., Kobel M., Koetke D. S., Kokott T. P., Komamiya S., Kowalewski R., Kress T., Krieger P., Von Krogh J., Kyberd P., Lafferty G. D., Lafoux H., Lahmann R., Lai W. P., Lanske D., Lauber J., Lautenschlager S. R., Layter J. G., Lazic D., Lee A. M., Lefebvre E., Lellouch D., Letts J., Levinson L., Lewis C., Lloyd S. L., Loebinger F. K., Long G. D., Losty M. J., Ludwig J., Luig A., Malik A., Mannelli M., Marcellini S., Markus C., Martin A. J., Martin J. P., Martinez G., Mashimo T., Matthews W., Mättig P., McDonald W. J., McKenna J., Mckigney E. A., McMahon T. J., McNab A. I., McPherson R. A., Meijers F., Menke S., Merritt F. S., Mes H., Meyer J., Michelini A., Mikenberg G., Miller D. J., Mir R., Mohr W., Montanari A., Mori T., Morii M., Müller U., Neal H. A., Nellen B., Nijjhar B., Nisius R., O'Neale S. W., Oakham F. G., Odorici F., Ogren H. O., Omori T., Oreglia M. J., Orito S., Pálinkás J., Pansart J. P., Pásztor G., Pater J. R., Patrick G. N., Pearce M. J., Petzold S., Pfeifenschneider P., Pilcher J. E., Pinfold J., Plane D. E., Poffenberger P., Poli B., Posthaus A., Przysiezniak H., Rees D. L., Rigby D., Robins S. A., Rodning N., Roney J. M., Rooke A., Ros E., Rossi A. M., Rosvick M., Routenburg P., Rozen Y., Runge K., Runolfsson O., Ruppel U., Rust D. R., Rylko R., Sarkisyan E. K., Sasaki M., Sbarra C., Schaile A. D., Schaile O., Scharf F., Scharff-Hansen P., Schenk P., Schmitt B., Schmitt S., Schröder M., Schultz-Coulon H. C., Schulz M., Schütz P., Scott W. G., Shears T. G., Shen B. C., Shepherd-Themistocleous C. H., Sherwood P., Siroli G. P., Sittler A., Skillman A., Skuja A., Smith A. M., Smith T. J., Snow G. A., Sobie R., Söldner-Rembold S., Springer R. W., Sproston M., Stahl A., Starks M., Steiert M., Stephens K., Steuerer J., Stockhausen B., Strom D., Strumia F., Szymanski P., Tafirout R., Talbot S. D., Tanaka S., Taras P., Tarem S., Tecchio M., Thiergen M., Thomson M. A., Von Törne E., Towers S., Tscheulin M., Tsukamoto T., Tsur E., Turcot A. S., Turner-Watson M. F., Utzat P., Van Kooten R., Vasseur G., Verzocchi M., Vikas P., Vincter M., Vokurka E. H., Wäckerle F., Wagner A., Ward C. P., Ward D. R., Ward J. J., Watkins P. M., Watson A. T., Watson N. K., Weber P., Wells P. S., Wermes N., White J. S., Wilkens B., Wilson G. W., Wilson J. A., Wlodek T., Wolf G., Wotton S., Wyatt T. R., Yamashita S., Yekutieli G. & Zacek V.
(1996)
Zeitschrift fur Physik C-Particles and Fields.
72,
p. 1-16
Measurements of the production of the weakly decaying charmed hadrons: D0, D+, Ds+ and Λc+ in both Z0 → cc̄ and Z0 → bb̄ events are reported. By summing the partial contributions from each of these states we measure the partial width for Z0 decays into a cc̄ pair as: Γcc̄/Γhad = 0.167 ± 0.011 (stat) ± 0.011 (sys) ± 0.005(br) where the errors are statistical, systematic and due to the uncertainties in the charmed hadron branching ratios, respectively. The relative production rates for the formation of the charmed hadrons from primary c quarks is found to be in good agreement with continuum e+e- data at √s ≈ 10 GeV. The measured rates of these four charmed hadrons in b hadron decays is found to account for 1.061 ± 0.045(stat) ± 0.060(sys) ± 0.037(br) c or c̄ quarks per 6 hadron decay. Comparison of the relative rates of the different charmed hadron species with Y(4S) data indicates higher rates for Ds+ and Λc+ hadrons and lower rates of D0 and D+ mesons as expected due to the different mixture of b hadrons.
Akers R., Alexander G., Allison J., Altekamp N., Ametewee K., Anderson K. J., Anderson S., Arcelli S., Asai S., Axen D., Azuelos G., Ball A. H., Barberio E., Barlow R. J., Bartoldus R., Batley J. R., Beaudoin G., Bechtluft J., Beck A., Beck G. A., Beeston C., Behnke T., Bell K. W., Bella G., Bentvelsen S., Berlich P., Bethke S., Biebel O., Bloodworth I. J., Bock P., Bosch H. M., Boutemeur M., Braibant S., Bright-Thomas P., Brown R. M., Buijs A., Burckhart H. J., Burgard C., Bürgin R., Capiluppi P., Carnegie R. K., Carter A. A., Carter J. R., Chang C. Y., Charlesworth C., Charlton D. G., Chu S. L., Clarke P. E., Clayton J. C., Clowes S. G., Cohen I., Conboy J. E., Cooke O. C., Cuffiani M., Dado S., Dallapiccola C., Dallavalle G. M., Darling C., De Jong S., del Pozo L. A., Deng H., Dixit M. S., do Couto e Silva E., Duboscq J. E., Duchovni E., Duckeck G., Duerdoth I. P., Dunwoody U. C., Edwards J. E., Estabrooks P. G., Evans H. G., Fabbri F., Fabbro B., Fanti M., Fath P., Fiedler F., Fierro M., Fincke-Keeler M., Fischer H. M., Folman R., Fong D. G., Foucher M., Fukui H., Fürtjes A., Gagnon P., Gaidot A., Gary J. W., Gascon J., Gascon-Shotkin S. M., Geddes N. I., Geich-Gimbel C., Gensler S. W., Gentit F. X., Geralis T., Giacomelli G., Giacomelli P., Giacomelli R., Gibson V., Gibson W. R., Gillies J. D., Gingrich D. M., Goldberg J., Goodrick M. J., Gorn W., Grandi C., Gross E., Hanson G. G., Hansroul M., Hapke M., Hargrove C. K., Hart P. A., Hartmann C., Hauschild M., Hawkes C. M., Hawkings R., Hemingway R. J., Herten G., Heuer R. D., Hill J. C., Hillier S. J., Hilse T., Hobson P. R., Hochman D., Homer R. J., Honma A. K., Howard R., Hughes-Jones R. E., Hutchcroft D. E., Igo-Kemenes P., Imrie D. C., Jawahery A., Jeffreys P. W., Jeremie H., Jimack M., Joly A., Jones M., Jones R. W., Jovanovic P., Kanzaki J., Karlen D., Kawagoe K., Kawamoto T., Keeler R. K., Kellogg R. G., Kennedy B. W., King B. J., King J., Kirk J., Kluth S., Kobayashi T., Kobel M., Koetke D. S., Kokott T. P., Komamiya S., Kowalewski R., Kress T., Krieger P., von Krogh J., Kyberd P., Lafferty G. D., Lafoux H., Lahmann R., Lai W. P., Lanske D., Lauber J., Layter J. G., Lee A. M., Lefebvre E., Lellouch D., Letts J., Levinson L., Lloyd S. L., Loebinger F. K., Long G. D., Lorazo B., Losty M. J., Ludwig J., Luig A., Malik A., Mannelli M., Marcellini S., Markus C., Martin A. J., Martin J. P., Mashimo T., Matthews W., Mättig P., McKenna J., Mckigney E. A., McMahon T. J., McNab A. I., Meijers F., Menke S., Merritt F. S., Mes H., Michelini A., Mikenberg G., Miller D. J., Mir R., Mohr W., Montanari A., Mori T., Morii M., Müller U., Nellen B., Nijjhar B., O'Neale S. W., Oakham F. G., Odorici F., Ogren H. O., Oldershaw N. J., Oram C. J., Oreglia M. J., Orito S., Palmonari F., Pansart J. P., Patrick G. N., Pearce M. J., Phillips P. D., Pilcher J. E., Pinfold J., Plane D. E., Poffenberger P., Poli B., Posthaus A., Pritchard T. W., Przysiezniak H., Redmond M. W., Rees D. L., Rigby D., Rison M. G., Robins S. A., Rodning N., Roney J. M., Ros E., Rossi A. M., Rosvick M., Routenburg P., Rozen Y., Runge K., Runolfsson O., Rust D. R., Sasaki M., Sbarra C., Schaile A. D., Schaile O., Scharf F., Scharff-Hansen P., Schenk P., Schmitt B., Schröder M., Schultz-Coulon H. C., Schulz M., Schütz P., Schwiening J., Scott W. G., Settles M., Shears T. G., Shen B. C., Shepherd-Themistocleous C. H., Sherwood P., Siroli G. P., Skillman A., Skuja A., Smith A. M., Smith T. J., Snow G. A., Sobie R., Söldner-Rembold S., Springer R. W., Sproston M., Stahl A., Starks M., Stegmann C., Stephens K., Steuerer J., Stockhausen B., Strom D., Szymanski P., Tafirout R., Taras P., Tarem S., Tecchio M., Teixeira-Dias P., Tesch N., Thomson M. A., von Törne E., Towers S., Tscheulin M., Tsukamoto T., Turcot A. S., Turner-Watson M. F., Utzat P., Van Kooten R., Vasseur G., Vikas P., Vincter M., Wäckerle F., Wagner A., Wagner D. L., Ward C. P., Ward D. R., Ward J. J., Watkins P. M., Watson A. T., Watson N. K., Weber P., Wells P. S., Wermes N., Wilkens B., Wilson G. W., Wilson J. A., Wlodek T., Wolf G., Wotton S., Wyatt T. R., Yekutieli G., Zacek V., Zeuner W. & Zorn G. T.
(1995)
European Physical Journal C.
69,
p. 195-214
The average lifetime of b-flavoured baryons measured with the OPAL detector is updated to include data collected between 1990 and 1994 at LEP. Bottom-flavoured baryons that decay semileptonically and produce a Λ baryon are identified through the correlation of the baryon number of the Λ and the electric charge of the lepton. To measure the lifetime, the decay point of the b baryon is estimated by the Λ-lepton vertex, and the observed distribution of decay lengths is fitted simultaneously in 874 right-sign and 384 wrong-sign combinations. In a separate method, the impact parameter distribution of the leptons is fitted in a subset of these data. When the two results are combined, taking correlations into account, the average b-baryon lifetime is found to be τ=1.16±0.11(stat.)±0.06(syst.) ps. Using the same data, the product branching ratio is measured to be {Mathematical expression}, where the symbol f(b→Λ b) is the fraction of b quarks from Z0 decays forming b baryons, Λ b represents all b-flavoured baryons and ℓ is either an electron or a muon.
AKERS R., ALEXANDER G., ALLISON J., ANDERSON K., ARCELLI S., ASAI S., ASTBURY A., AXEN D., AZUELOS G., BALL A., BARBERIO E., BARLOW R., BARTOLDUS R., BATLEY J., BEAUDOIN G., Beck A., BECK G., BECKER J., BEESTON C., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1995)
European Physical Journal C.
65,
1,
p. 17-30
The fraction of {Mathematical expression}; events in hadronic Z0 decays has been measured using the data collected by OPAL in 1992 and 1993. The presence of electrons or muons from semileptonic decays of bottom hadrons and the detection of bottom hadron decay vertices were used together to obtain an event sample enriched in {Mathematical expression} decays. To reduce the systematic error on the measurement of the {Mathematical expression} fraction, the efficiency of the {Mathematical expression} event tagging was obtained from the data by comparing the numbers of events having a bottom signature in either one or both thrust hemispheres. A value of {Mathematical expression} was obtained, where the first error is statistical and the second systematic. The uncertainty on the decay width {Mathematical expression} is not included in these errors. A fractional variation of this width by ±8% about its Standard Model prediction would result in a variation of the measured {Mathematical expression} fraction of ±0.0015.
Gross E., KNIEHL B. & WOLF G.
(1994)
European Physical Journal C.
63,
3,
p. 417-425
We collect and update theoretical predictions for the production rate and decay branching fractions of the Standard Model Higgs boson that will be relevant for the Higgs search at LEP200. We make full use of the present knowledge of radiative corrections. We estimate the systematics arising from theoretical and experimental uncertainties.Errata: Z. Phys. C 66, 321-322 (1995):There is a typographical error in the expression for F(H --~
99) listed in (23): The power of 7r appearing in the denominator on the
right-hand side should be 3 instead of 2. The correct formula may be found,
e.g., in (3.40) of [12]. In the computer program that was created for the
purpose of this article, this very formula was implemented wrongly, too: There
7r appeared with the power 5 instead of 3. As a con[1]sequence, Figs. 9 and 10
and some entries in Tables 3-5 are erroneous. We thank G. Crosetti for noticing
this. Furthermore, the contributions due to the first five quark flavours are
neglected in (23), which is an unnecessary simiplification and gives an
unsatisfactory approximation. We thank P. Janot for pointing this out. (23)
should be replaced by the exact one-loop formula, which is listed, e.g., in
(3.39) of [12]. We choose to evaluate this formula using the quark pole masses.
The revised figures and tables are presented below
Abreu P., Adam W., Adye T., Agasi E., Ajinenko I., Aleksan R., Alekseev G. D., Algeri A., Allport P., Almehed S., Alvsvaag S. J., Amaldi U., Andreazza A., Antilogus P., Apel W. D., Apsimon R. J., Arnoud Y., Åsman B., Augustin J. E., Augustinus A., Baillon P., Bambade P., Barao F., Barate R., Barbiellini G., Bardin D. Y., Barker G. J., Baroncelli A., Barring O., Barrio J. A., Bartl W., Bates M. J., Battaglia M., Baubillier M., Begalli M., Beilliere P., Beltran P., Benvenuti A. C., Berggren M., Bertrand D., Bianchi F., Bigi M., Bilenky M. S., Billoir P., Bjarne J., Bloch D., Blocki J., Blume M., Blyth S., Bocci V., Bogolubov P. N., Bolognese T., Bonesini M., Bonivento W., Booth P. S., Borisov G., Borner H., Bosio C., Bostjancic B., Bosworth S., Botner O., Bouquet B., Bourdarios C., Bowcock T. J., Bozzo M., Braibant S., Branchini P., Brand K. D., Brenke T., Brenner R. A., Briand H., Bricman C., Brillault L., Brown R. C., Bruckman P., Brunet J. M., Budziak A., Bugge L., Buran T., Burmeister H., Buys A., Buytaert J. A., Caccia M., Calvi M., Camacho Rozas A. J., Campion R., Camporesi T., Canale V., Cankocak K., Cao F., Carena F., Carroll L., Castillo Gimenez M. V., Cattai A., Cavallo F. R., Cerrito L., Chabaud V., Chan A., Chapkin M., Charpentier P., Chauveau J., Checchia P., Chelkov G. A., Chevalier L., Chliapnikov P., Chorowicz V., Chrin J. T., Cindro V., Collins P., Contreras J. L., Contri R., Cortina E., Cosme G., Couchot F., Crawley H. B., Crennell D., Crosetti G., Maestro J. C., Czellar S., Dahl-Jensen E., Dahm J., Dalmagne B., Dam M., Damgaard G., Daubie E., Daum A., Dauncey P. D., Davenport M., Davies J., Da Silva W., Defoix C., Delpierre P., Demaria N., De Angelis A., De Boeck H., De Boer W., De Brabandere S., De Clercq C., De Fez Laso M. D., De La Vaissiere C., De Lotto B., De Min A., Dijkstra H., Di Ciacco L., Djama F., Dolbeau J., Donszelmann M., Doroba K., Dracos M., Drees J., Dris M., Dufour Y., Dupont F., Edsall D., Eek L. O., Eerola P. A., Ehret R., Ekelof T., Ekspong G., Peisert A. E., Elsing M., Engel J. P., Ershaidat N., Espirito Santo M., Falaleev V., Fassouliotis D., Feindt M., Fenyuk A., Ferrer A., Filippas T. A., Firestone A., Foeth H., Fokitis E., Fontanelli F., Forbes K. A., Fousset J. L., Francon S., Franek B., Frenkiel P., Fries D. C., Frodesen A. G., Fruhwirth R., Fulda-Quenzer F., Furstenau H., Fuster J., Gamba D., Gandelman M., Garcia C., Garcia J., Gaspar C., Gasparini U., Gavillet P., Gazis E. N., Gerber J. P., Giacomelli P., Gillespie D., Gokieli R., Golob B., Golovatyuk V. M., Gomez Y Cadenas J. J., Gopal G., Gorn L., Gorski M., Gracco V., Grant A., Grard F., Graziani E., Grosdidier G., Gross E., Grossetete B., Gunnarsson P., Guy J., Haedinger U., Hahn F., Hahn M., Hahn S., Haider S., Hajduk Z., Hakansson A., Hallgren A., Hamacher K., Hamel De Monchenault G., Hao W., Harris F. J., Hedberg V., Henkes T., Henriques R., Hernandez J. J., Hernando J. A., Herquet P., Herr H., Hessing T. L., Hietanen I., Higgins C. O., Higon E., Hilke H. J., Hill T. S., Hodgson S. D., Hofmokl T., Holmgren S. O., Holt P. J., Holthuizen D., Honore P. F., Houlden M., Hrubec J., Huet K., Hultqvist K., Ioannou P., Iversen P. S., Jackson J. N., Jacobsson R., Jalocha P., Jarlskog G., Jarry P., Jean-Marie B., Johansson E. K., Jonker M., Jonsson L., Juillot P., Kalkanis G., Kalmus G., Kapusta F., Karlsson M., Karvelas E., Katsanevas S., Katsoufis E. C., Keranen R., Khomenko B. A., Khovanski N. N., King B., Kjaer N. J., Klein H., Klovning A., Kluit P., Koch-Mehrin A., Koehne J. H., Koene B., Kokkinias P., Koratzinos M., Korytov A. V., Kostioukhine V., Kourkoumelis C., Kouznetsov O., Kramer P. H., Krammer M., Kreuter C., Krolikowski J., Kronkvist I., Kucewicz W., Kulka K., Kurvinen K., Lacasta C., Lambropoulos C., Lamsa J. W., Lanceri L., Langefeld P., Lapin V., Last I., Laugier J. P., Lauhakangas R., Leder G., Ledroit F., Leitner R., Lemoigne Y., Lemonne J., Lenzen G., Lepeltier V., Levy J. M., Lieb E., Liko D., Lindgren J., Lindner R., Lipniacka A., Lippi I., Loerstad B., Lokajicek M., Loken J. G., Lopez-Fernandez A., Lopez Aguera M. A., Los M., Loukas D., Lozano J. J., Lutz P., Lyons L., Maehlum G., Maillard J., Maio A., Maltezos A., Marco J., Margoni M., Marin J. C., Mariotti C., Markou A., Maron T., Marti S., Martinez-Rivero C., Martinez-Vidal F., Matorras F., Matteuzzi C., Matthiae G., Mazzucato M., Mc Cubbin M., Mc Kay R., Mc Nulty R., Medbo J., Meroni C., Meyer W. T., Michelotto M., Mikulec I., Mirabito L., Mitaroff W. A., Mitselmakher G. V., Mjoernmark U., Moa T., Moeller R., Moenig K., Monge M. R., Morettini P., Mueller H., Murray W. J., Muryn B., Myatt G., Naraghi F., Navarria F. L., Negri P., Nemecek S., Neumann W., Neumeister N., Nicolaidou R., Nielsen B. S., Nilsen P. E., Niss P., Nomerotski A., Obraztsov V., Olshevski A. G., Orava R., Ostankov A., Osterberg K., Ouraou A., Paganini P., Paganoni M., Pain R., Palka H., Papadopoulou T. D., Pape L., Parodi F., Passeri A., Pegoraro M., Pennanen J., Peralta L., Pernegger H., Pernicka M., Perrotta A., Petridou C., Petrolini A., Piana G., Pierre F., Pimenta M., Plaszczynski S., Podobrin O., Pol M. E., Polok G., Poropat P., Pozdniakov V., Prest M., Privitera P., Pullia A., Radojicic D., Ragazzi S., Rahmani H., Rames J., Ratoff P. N., Read A. L., Reale M., Rebecchi P., Redaelli N. G., Regler M., Reid D., Renton P. B., Resvanis L. K., Richard F., Richardson J., Ridky J., Rinaudo G., Romero A., Roncagliolo I., Ronchese P., Ronnqvist C., Rosenberg E. I., Rosso E., Roudeau P., Rovelli T., Ruckstuhl W., Ruhlmann-Kleider V., Ruiz A., Rybicki K., Rybin A., Saarikko H., Sacquin Y., Sajot G., Salt J., Sanchez J., Sannino M., Schael S., Schneider H., Schyns M. A., Sciolla G., Scuri F., Segar A. M., Seitz A., Sekulin R., Sessa M., Seufert R., Shellard R. C., Siccama I., Siegrist P., Simonetti S., Simonetto F., Sisakian A. N., Skjevling G., Smadja G., Smirnov N., Smirnova O., Smith G. R., Sosnowski R., Souza-Santos D., Spassov T., Spiriti E., Squarcia S., Stanescu C., Stapnes S., Stavropoulos G., Stichelbaut F., Stocchi A., Strauss J., Straver J., Strub R., Stugu B., Szczekowski M., Szeptycka M., Szymanski P., Tabarelli T., Tchikilev O., Theodosiou G. E., Tilquin A., Timmermans J., Timofeev V. G., Tkatchev L. G., Todorov T., Toet D. Z., Toker O., Tomaradze A., Tome B., Torassa E., Tortora L., Treille D., Trischuk W., Tristram G., Troncon C., Tsirou A., Tsyganov E. N., Turala M., Turluer M. L., Tuuva T., Tyapkin I. A., Tyndel M., Tzamarias S., Ueberschaer B., Ueberschaer S., Ullaland O., Valenti G., Vallazza E., Valls Ferrer J. A., Vander Velde C., Van Apeldoorn G. W., Van Dam P., Van Der Heijden M., Van Doninck W. K., Van Eldik J., Vaz P., Vegni G., Ventura L., Venus W., Verbeure F., Verlato M., Vertogradov L. S., Vilanova D., Vincent P., Vitale L., Vlasov E., Vodopyanov A. S., Vollmer M., Voutilainen M., Vrba V., Wahlen H., Walck C., Waldner F., Wehr A., Weierstall M., Weilhammer P., Wetherell A. M., Wickens J. H., Wielers M., Wilkinson G. R., Williams W. S., Winter M., Wormser G., Woschnagg K., Zaitsev A., Zalewska A., Zavrtanik D., Zevgolatakos E., Zimin N. I., Zito M., Zontar D., Zuberi R., Zumerle G. & Zuniga J.
(1994)
Physics Letters B.
323,
2,
p. 242-252
K0SK0S correlations have been studied in a sample of 717 511 hadronic events collected by the DELPHI detector at LEP during 1992. An enhancement is found in the production of pairs of K0S of similar momenta, as compared with a Monte Carlo simulated reference sample. The measured values for the strength of the correlation and the radius of the emitting source of kaons are λ = 1.13 ± 0.54 (stat) ± 0.23 (syst) and r = 0.90 ± 0.19 (stat) ± 0.10 (syst) fm. This enhancement is consistent with the hypothesis that K0SK0S pairs display an enhancement, regardless of whether they come from a K0K̄0 or from a K0K0 (K̄0K̄0) system.
ACTON P., AKERS R., ALEXANDER G., ALLISON J., ANDERSON K., ARCELLI S., ASTBURY A., AXEN D., AZUELOS G., BAINES J., BALL A., BANKS J., BARLOW R., BARNETT S., BATOLDUS R., BATLEY J., BEAUDOIN G., Beck A., BECK G., Duchovni E., Gross E., Levinson L., Lellouch D. & Mikenberg G.
(1993)
European Physical Journal C.
60,
2,
p. 217-228
A sample of 2610 electron candidates and 2762 muon candidates identified in hadronic Z0 decays has been used to measure the average b hadron lifetime. These data were recorded with the OPAL detector during 1990 and 1991. Maximum likelihood fits to the distributions of the lepton impact parameters yield an average b hadron lifetime of {Mathematical expression}, where the first error is statistical and the second systematic. This result is a weighted average over the semileptonic branching fractions and production rates of the b hadrons produced in Z0 decays.
Abreu P., Adam W., Adami F., Adye T., Akesson T., Alekseev G. D., Allen P., Almehed S., Alvsvaag S. J., Amaldi U., Anassontzis E., Antilogus P., Apel W. D., Apsimon R. J., Åsman B., Augustin J. E., Augustinus A., Baillon P., Bambade P., Barao F., Barate R., Barbiellini G., Bardin D. Y., Baroncelli A., Barring O., Bartl W., Bates M. J., Battaglia M., Baubillier M., Becks K. H., Beeston C. J., Begalli M., Beilliere P., Belokopytov Y., Beltran P., Benedic D., Benlloch J. M., Berggren M., Bertrand D., Bianchi F., Bilenky M. S., Billoir P., Bjarne J., Bloch D., Blyth S., Bocci V., Bogolubov P. N., Bolognese T., Bonapart M., Bonesini M., Bonivento W., Booth P. S., Borgeaud P., Borisov G., Borner H., Bosio C., Bostjancic B., Botner O., Bouquet B., Bourdarios C., Bozzo M., Braibant S., Branchini P., Brand K. D., Brenner R. A., Briand H., Bricman C., Brown R. C., Brummer N., Brunet J. M., Bugge L., Buran T., Burmeister H., Buytaert J. A., Caccia M., Calvi M., Camacho Roxas A. J., Campion A., Camporesi T., Canale V., Cao F., Carena F., Carroll L., Caso C., Castelli E., Castillo Gimenez M. V., Cattai A., Cavallo F. R., Cerrito L., Chan A., Charpentier P., Chaussard L., Chauveau J., Checchia P., Chelkov G. A., Chevalier L., Chliapnikov P., Chorowicz V., Cirio R., Clara M. P., Collins P., Contreras J. L., Contri R., Cosme G., Couchot F., Crawley H. B., Crennell D., Crosetti G., Crozon M., Maestro J. C., Czellar S., Dagoret S., Dahl-Jensen E., Dalmagne B., Dam M., Damgaard G., Darbo G., Daubie E., Dauncey P. D., Davenport M., David P., Da Silva W., Defoix C., Delikaris D., Delorme S., Delpierre P., Demaria N., De Angelis A., De Beer M., De Boeck H., De Boer W., De Clercq C., De Fez Laso M. D., De Groot N., De La Vaissiere C., De Lotto B., De Min A., Dijkstra H., Di Ciaccio L., Djama F., Dolbeau J., Donszelmann M., Doroba K., Dracos M., Deres J., Dris M., Dufour Y., Dulinski W., Eek L. O., Eerola P. A., Ekelof T., Ekspong G., Peisert A. E., Engel J. P., Fassouliotis D., Feindt M., Fenyuk A., Alonzo M. F., Ferrer A., Filippas T. A., Firestone A., Foeth H., Fokitis E., Folegati P., Fontanelli F., Forbes K. A., Franek B., Frenkiel P., Fries D. C., Frodesen A. G., Fruhwirth R., Fulda-Quenzer F., Furnival K., Furstenau H., Fuster J., Galeazzi G., Gamba D., Garcia C., Garcia J., Gaspar C., Gasparini U., Gavillet P., Gazis E. N., Gerber J. P., Giacomelli P., Gokieli R., Golovatyuk V. M., Gomez Y Cadenas J. J., Goobar A., Gopal G., Gorski M., Gracco V., Grant A., Grard F., Graziani E., Grosdidier G., Gross E., Grosse-Wiesmann P., Grossetete B., Gumenyuk S., Guy J., Hahn F., Hahn M., Haider S., Hajduk Z., Hakansson A., Hallgren A., Hamacher K., Hamel De Monchenault G., Harris F. J., Heck B. W., Henkes T., Hernandez J. J., Herquet P., Herr H., Hietanen I., Higgins C. O., Higon E., Hilke H. J., Hodgson S. D., Hofmokl T., Holmes R., Holmgren S. O., Holthuizen D., Honore P. F., Hooper J. E., Houlden M., Hrubec J., Hulth P. O., Hultqvist K., Husson D., Ioannou P., Isenhower D., Iversen P. S., Jackson J. N., Jalocha P., Jarlskog G., Jarry P., Jean-Marie B., Johansson E. K., Johnson D., Jonker M., Jonsson L., Juillot P., Kalkanis G., Kalmus G., Kapusta F., Karlsson M., Katsanevas S., Katsoufis E. C., Keranen R., Kesteman J., Khomenko B. A., Khovanski N. N., King B., Kjaer N. J., Klein H., Klempt W., Klovning A., Kluit P., Koehne J. H., Koene B., Kokkinias P., Kopf M., Koratzinos M., Korcyl K., Korytov A. V., Kostiukhin V., Kostrikov M., Kourkoumelis C., Kramer P. H., Kreuzberger T., Krolikowski J., Kronkvist I., Krstic J., Kruener-Marquis U., Krupinski W., Kucewicz W., Kurvinen K., Lacasta C., Lambropoulos C., Lamsa J. W., Lanceri L., Lapin V., Laugier J. P., Lauhakangas R., Leder G., Ledroit F., Leitner R., Lemoigne Y., Lemonne J., Lenzen G., Lepeltier V., Letessier-Selvon A., Lieb E., Liko D., Lillethun E., Lindgren J., Lindner R., Lipniacka A., Lippi I., Llosa R., Loerstad B., Lokajicek M., Loken J. G., Lopez-Fernandez A., Lopez Aguera M. A., Los M., Loukas D., Lounis A., Lozano J. J., Lutz P., Lyons L., Maehlum G., Maillard J., Maltezos A., Mandl F., Marco J., Margoni M., Marin J. C., Markou A., Maron T., Marti S., Mathis L., Matorras F., Matteuzzi C., Matthiae G., Mazzucato M., Mc Cubbin M., Mc Kay R., Mc Nulty R., Menichetti E., Meola G., Meroni C., Meyer W. T., Michelotto M., Mitaroff W. A., Mitselmakher G. V., Mjoernmark U., Moa T., Moeller R., Moenig K., Monge M. R., Morettini P., Mueller H., Murray W. J., Muryn B., Myatt G., Naraghi F., Navarria F. L., Negri P., Nielsen B. S., Nijjhar B., Nikolaenko V., Obraztsov V., Oesterberg K., Olshevski A. G., Orava R., Ostankov A., Ouraou A., Paganoni M., Pain R., Palka H., Papadopoulou T., Pape L., Passeri A., Pegoraro M., Pennanen J., Perevozchikov V., Pernicka M., Perrotta A., Pierre F., Pimenta M., Pingot O., Pol M. E., Polok G., Poropat P., Privitera P., Pullia A., Radojicic D., Ragazzi S., Ratoff P. N., Read A. L., Redaelli N. G., Regler M., Reid D., Renton P. B., Resvanis L. K., Richard F., Richardson M., Ridky J., Rinaudo G., Roditi I., Romero A., Roncagliolo I., Ronchese P., Ronnqvist C., Rosenberg E. I., Rossi U., Rosso E., Roudeau P., Rovelli T., Ruckstuhl W., Ruhlmann V., Ruiz A., Rybicki K., Saarikko H., Sacquin Y., Sajot G., Salt J., Sanchez E., Sanchez 0., Sannino M., Schaeffer M., Schael S., Schneider H., Schyns M. A., Scuri F., Segar A. M., Sekulin R., Sessa M., Sette G., Seufert R., Shellard R. C., Siegrist P., Simonetti S., Simonetto F., Sissakian A. N., Skaali T. B., Skjevling G., Smadja G., Smirnov N., Smith G. R., Sosnowski R., Spassoff T. S., Spiriti E., Squarcia S., Staeck H., Stanescu C., Stavropoulos G., Stichelbaut F., Stocchi A., Strauss J., Strub R., Szczekowski M., Szeptycka M., Szymanski P., Tabarelli T., Tavernier S., Theodosiou G. E., Tilquin A., Timmermans J., Timofeev V. G., Tkatchev L. G., Todorov T., Toet D. Z., Toker O., Torassa E., Tortora L., Trainor M. T., Treille D., Trevisan U., Trischuk W., Tristram G., Troncon C., Tsirou A., Tsyganov E. N., Turala M., Turchetta R., Turluer M. L., Tuuva T., Tyapkin I. A., Tyndel M., Tzamarias S., Ueberschaer S., Ullaland O., Uvarov V., Valenti G., Vallazza E., Valls Ferrer J. A., Vander Velde C., Van Apeldoorn G. W., Van Dam P., Van Doninck W. K., Varela J., Vaz P., Vegni G., Ventura L., Venus W., Verbeure F., Vertogradov L. S., Vilanova D., Vitale L., Vlasov E., Vlassopoulos S., Vodopyanov A. S., Vollmer M., Volponi S., Voulgaris G., Voutilainen M., Vrba V., Wahlen H., Walck C., Waldner F., Wayne M., Wehr A., Weierstall M., Weilhammer P., Werner J., Wetherell A. M., Wickens J. H., Wikne J., Wilkinson G. R., Williams W. S., Winter M., Wormald D., Wormser G., Woschnagg K., Yamdagni N., Yepes P., Zaitsev A., Zalewski P., Zalewski P., Zavrtanik D., Zevgolatakos E., Zhang G., Zimin N. I., Zito M., Zitoun R., Zukanovich Funchal R., Zumerle G. & Zuniga J.
(1992)
Physics Letters B.
277,
3,
p. 371-382
The weak mixing angle has been measured from the charge asymmetry of hadronic events with two different approaches using the DELPHI detector at LEP. Both methods are based on a momentum-weighted charge sum to determine the jet charge in both event hemispheres. In a data sample of 247 300 multihadronic Z0 decays a charge asymmetry of 〈QF〉 - 〈QB〉 = -0.0076±0.0012(stat.)±0.0005(exp. syst.)±0.0014(frag.) and a raw forward-backward asymmetry of ArawFB = -0.0109±0.0020(stat.)±0.0010(exp. syst.)±0.0017(frag.) have been measured. This result corresponds to a value of sinθeff=0.2345±0.0030(exp.)±0.0027(frag.) , sin2θMS=0.2341±0.0030(exp.)±0. 0027(frag.) and to sin2θW=1-m2W/m2 Z=0.2299± 0.0030(exp.)±0.0027(frag.)±0.0028(theor.). The experimental error is the quadratic sum of the statistical and the experimental systematic error and the theoretical error originates from a value of mt=130±40 GeV/c2 and a range of mH from 45 GeV/c2 to 1000 GeV/c2.
Abreu P., Adam W., Adami F., Adye T., Akesson T., Alekseev G. D., Allen P., Almehed S., Alvsvaag S. J., Amaldi U., Anassontzis E., Antilogus P., Apel W. D., Apsimon R. J., Åsman B., Astier P., Augustin J. E., Augustinus A., Baillon P., Bambade P., Barao F., Barate R., Barbiellini G., Bardin D. Y., Baroncelli A., Barring O., Bartl W., Bates M. J., Battaglia M., Baubillier M., Becks K. H., Beeston C. J., Begalli M., Beilliere P., Belokopytov Y., Beltran P., Benedic D., Benlloch J. M., Berggren M., Bertrand D., Bianchi F., Bilenky M. S., Billoir P., Bjarne J., Bloch D., Blyth S., Bocci V., Bogolubov P. N., Bolognese T., Bonapart M., Bonesini M., Bonivento W., Booth P. S., Boratav M., Borgeaud P., Borisov G., Borner H., Bosio C., Bostjancic B., Botner O., Bouquet B., Bourdarios C., Bozzo M., Braibant S., Branchini P., Brand K. D., Brenner R. A., Bricman C., Brown R. C., Brummer N., Brunet J. M., Bugge L., Buran T., Burmeister H., Buytaert J. A., Caccia M., Calvi M., Camacho Rozas A. J., Campion A., Camporesi T., Canale V., Cao F., Carena F., Carroll L., Caso C., Castelli E., Castillo Gimenez M. V., Cattai A., Cavallo F. R., Cerrito L., Chan A., Chapkin M., Charpentier P., Chaussard L., Checchia P., Chelkov G. A., Chevalier L., Chliapnikov P., Chorowicz V., Cirio R., Clara M. P., Collins P., Contreras J. L., Contri R., Cosme G., Couchot F., Crawley H. B., Crennell D., Crosetti G., Crozon M., Cuevas Maestro J., Czellar S., Dagoret S., Dahl-Jensen E., Dalmagne B., Dam M., Damgaard G., Darbo G., Daubie E., Dauncey P. D., Davenport M., David P., Defoix C., Delikaris D., Delorme S., Delpierre P., Demaria N., De Angelis A., De Beer M., De Boeck H., De Boer W., De Clercq C., De Fez Laso M. D., De Groot N., De La Vaissiere C., De Lotto B., De Min A., Dijkstra H., Di Ciaccio L., Djama F., Dolbeau J., Doll O., Donszelmann M., Doroba K., Dracos M., Drees J., Dris M., Dufour Y., Dulinski W., Dzhelyadin R., Eek L. O., Eerola P. A., Ekelof T., Ekspong G., Elliot Peisert A., Engel J. P., Fassouliotis D., Feindt M., Fernandez Alonso M., Ferrer A., Filippas T. A., Firestone A., Foeth H., Fokitis E., Folegati P., Fontanelli F., Forbes K. A., Forsbach H., Franek B., Frenkiel P., Fries D. C., Frodesen A. G., Fruhwirth R., Fulda-Quenzer F., Furnival K., Furstenau H., Fuster J., Galeazzi G., Gamba D., Garcia C., Garcia J., Gaspar C., Gasparini U., Gavillet P., Gazis E. N., Gerber J. P., Giacomelli P., Glitza K. W., Gokieli R., Golovatyuk V. M., Gomez Y Cadenas J. J., Goobar A., Gopal G., Gorski M., Gracco V., Grant A., Grard F., Graziani E., Grosdidier G., Gross E., Grosse-Wiesmann P., Grossetete B., Guy J., Hahn F., Hahn M., Haider S., Hajduk Z., Hakansson A., Hallgren A., Hamacher K., De Monchenault G. H., Harris F. J., Heck B. W., Henkes T., Herbst I., Hernandez J. J., Herquet P., Herr H., Hietanen I., Higgins C. O., Higon E., Hilke H. J., Hodgson S. D., Hofmokl T., Holmes R., Holmgren S. O., Holthuizen D., Honore P. F., Hooper J. E., Houlden M., Hrubec J., Hulth P. O., Hultqvist K., Husson D., Ioannou P., Isenhower D., Iversen P. S., Jackson J. N., Jalocha P., Jarlskog G., Jarry P., Jean-Marie B., Johansson E. K., Johnson D., Jonker M., Jonsson L., Juillot P., Kalkanis G., Kalmus G., Kapusta F., Katsanevas S., Katsoufis E. C., Keranen R., Kesteman J., Khomenko B. A., Khovanski N. N., King B., Kjaer N. J., Klein H., Klempt W., Klovning A., Kluit P., Koch-Mehrin A., Koehne J. H., Koene B., Kokkinias P., Kopf M., Koratzinos M., Korcyl K., Korytov A. V., Kostiukhin V., Kourkoumelis C., Kreuzberger T., Krolikowski J., Kronkvist I., Krstic J., Kruener-Marquis U., Krupinski W., Kucewicz W., Kurvinen K., Lacasta C., Lambropoulos C., Lamsa J. W., Lanceri L., Lapin V., Laugier J. P., Lauhakangas R., Leder G., Ledroit F., Leitner R., Lemoigne Y., Lemonne J., Lenzen G., Lepeltier V., Letessier-Selvon A., Lieb E., Liko D., Lillethun E., Lindgren J., Lipniacka A., Lippi I., Llosa R., Loerstad B., Lokajicek M., Loken J. G., Lopez-Fernandez A., Lopez Aguera M. A., Los M., Loukas D., Lounis A., Lozano J. J., Lutz P., Lyons L., Maehlum G., Magnussen N., Maillard J., Maltezos A., Mandl F., Marco J., Margoni M., Marin J. C., Markou A., Marti S., Mathis L., Matorras F., Matteuzzi C., Matthiae G., Mazzucato M., McCubbin M., McKay R., McNulty R., Menichetti E., Meola G., Meroni C., Meyer W. T., Michelotto M., Mitaroff W. A., Mitselmakher G. V., Mjoernmark U., Moa T., Moeller R., Moenig K., Monge M. R., Morettini P., Mueller H., Murray W. J., Muryn B., Myatt G., Naraghi F., Nau-Korzen U., Navarria F. L., Negri P., Nielsen B. S., Nijjhar B., Nikolaenko V., Obraztsov V., Oesterberg K., Olshevski A. G., Orava R., Ostankov A., Ouraou A., Paganoni M., Pain R., Palka H., Papadopoulou T., Pape L., Passeri A., Pegoraro M., Pennanen J., Perevozchikov V., Pernicka M., Perrotta A., Pierre F., Pimenta M., Pingot O., Pol M. E., Polok G., Poropat P., Privitera P., Pullia A., Radojicic D., Ragazzi S., Ratoff P. N., Read A. L., Redaelli N. G., Regler M., Reid D., Renton P. B., Resvanis L. K., Richard F., Richardson M., Ridky J., Rinaudo G., Roditi I., Romero A., Roncagliolo I., Ronchese P., Ronnqvist C., Rosenberg E. I., Rossi U., Rosso E., Roudeau P., Rovelli T., Ruckstuhl W., Ruhlmann V., Ruiz A., Rybicki K., Saarikko H., Sacquin Y., Sajot G., Salt J., Sanchez E., Sanchez J., Sannino M., Schaeffer M., Schael S., Schneider H., Schyns M. A., Scuri F., Segar A. M., Sekulin R., Sessa M., Sette G., Seufert R., Shellard R. C., Siegrist P., Simonetti S., Simonetto F., Sissakian A. N., Skaali T. B., Skjevling G., Smadja G., Smirnov N., Smith G. R., Sosnowski R., Spassoff T. S., Spiriti E., Squarcia S., Staeck H., Stanescu C., Stavropoulos G., Stichelbaut F., Stocchi A., Strauss J., Strub R., Szczekowski M., Szeptycka M., Szymanski P., Tabarelli T., Tavernier S., Tchikilev O., Theodosiou G. E., Tilquin A., Timmermans J., Timofeev V. G., Tkatchev L. G., Todorov T., Toet D. Z., Toker O., Torassa E., Tortora L., Trainor M. T., Treille D., Trevisan U., Trischuk W., Tristram G., Troncon C., Tsirou A., Tsyganov E. N., Turala M., Turchetta R., Turluer M. L., Tuuva T., Tyapkin I. A., Tyndel M., Tzamarias S., Ueberschaer B., Ueberschaer S., Ullaland O., Uvarov V., Valenti G., Vallazza E., Valls Ferrer J. A., Van der Velde C., Van Apeldoorn G. W., Van Dam P., Van Doninck W. K., Varela J., Vaz P., Vegni G., Ventura L., Venus W., Verbeure F., Vertogradov L. S., Vibert L., Vilanova D., Vitale L., Vlasov E., Vlasov E. V., Vlassopoulos S., Vodopyanov A. S., Vollmer M., Volponi S., Voulgaris G., Voutilainen M., Vrba V., Wahlen H., Walck C., Waldner F., Wayne M., Weilhammer P., Werner J., Wetherell A. M., Wickens J. H., Wikne J., Wilkinson G. R., Williams W. S., Winter M., Wormald D., Wormser G., Woschnagg K., Yamdagni N., Yepes P., Zaitsev A., Zalewska A., Zalewski P., Zavrtanik D., Zevgolatakos E., Zhang G., Zimin N. I., Zito M., Zitoun R., Zukanovich Funchal R., Zumerle G. & Zuniga J.
(1992)
Physics Letters B.
274,
2,
p. 230-238
We have searched for possible fourth family heavy neutrinos, pair produced in Z0 decays, in a sample of about 112 000 hadronic Z0 final states collected with the DELPHI detector. For all mixing matrix elements we exclude a new Dirac neutrino lighter than 44.5 GeV at a 95% confidence level, if the neutrino couples to the electron or muon family, and lighter than 44.0 GeV, if the neutrino couples to the tau family. Depending on the values of the mixing element and to which lepton family the neutrino couples, we obtain mass limits up to 46.2 GeV. For all mixing matrix elements we exclude a new Majorana neutrino lighter than 39.0 GeV, if it couples to the electron or the muon family, and lighter than 38.2 GeV, if it couples to the tau family. Depending on the values of the mixing matrix element and to which lepton family the neutrino couples, we obtain mass limits up to 44.7 GeV. We also exclude stable new Dirac neutrinos lighter than 45.0 GeV and new Majorana neutrinos lighter than 39.5 GeV.
Acton P. D., Alexander G., Allison J., Allport P. P., Anderson K. J., Arcelli S., Armitage J. C., Ashton P., Astbury A., Axen D., Azuelos G., Bahan G. A., Baines J. T., Ball A. H., Banks J., Barker G. J., Barlow R. J., Batley J. R., Beaudoin G., Beck A., Becker J., Behnke T., Bell K. W., Bella G., Bethke S., Biebel O., Binder U., Bloodworth I. J., Bock P., Boden B., Bosch H. M., Bougerolle S., Brabson B. B., Breuker H., Brown R. M., Brun R., Buijs A., Burckhart H. J., Capiluppi P., Carnegie R. K., Carter A. A., Carter J. R., Chang C. Y., Charlton D. G., Chrin J. T., Clarke P. E., Cohen I., Collins W. J., Conboy J. E., Cooper M., Couch M., Coupland M., Cuffiani M., Dado S., Dallavalle G. M., De Jong S., Debu P., Del Pozo L., Deninno M. M., Dieckmann A., Dittmar M., Dixit M. S., Duchovni E., Duckeck G., Duerdoth I. P., Dumas D. J., Eckerlin G., Elcombe P. A., Estabrooks P. G., Etzion E., Fabbri F., Fincke-Keeler M., Fischer H. M., Fong D. G., Fukunaga C., Gaidot A., Ganel O., Gary J. W., Gascon J., McGowan R. F., Geddes N. I., Geich-Gimbel C., Gensler S. W., Gentit F. X., Giacomelli G., Gibson V., Gibson W. R., Gillies J. D., Goldberg J., Goodrick M. J., Gorn W., Grandi C., Grant F. C., Gross E., Hagemann J., Hanson G. G., Hansroul M., Hargrove C. K., Harrison P. F., Hart J., Hattersley P. M., Hauschild M., Hawkes C. M., Heflin E., Hemingway R. J., Heuer R. D., Hill J. C., Hillier S. J., Hinshaw D. A., Ho C., Hobbs J. D., Hobson P. R., Hochman D., Holl B., Homer R. J., Hou S. R., Howarth C. P., Hughes-Jones R. E., Humbert R., Igo-Kemenes P., Ihssen H., Imrie D. C., Janissen L., Jawahery A., Jeffreys P. W., Jeremie H., Jimack M., Jobes M., Jones R. W., Jovanovic P., Karlen D., Kawagoe K., Kawamoto T., Keeler R. K., Kellogg R. G., Kennedy B. W., Kleinwort C., Klem D. E., Kobayashi T., Kokott T. P., Komamiya S., Köpke L., Kowalewski R., Kreutzmann H., von Krogh J., Kroll J., Kuwano M., Kyberd P., Lafferty G. D., Lamarche F., Larson W. J., Layter J. G., Le Du P., Leblanc P., Lee A. M., Lehto M. H., Lellouch D., Lennert P., Leroy C., Lessard L., Letts J., Levegrün S., Levinson L., Lloyd S. L., Loebinger F. K., Lorah J. M., Lorazo B., Losty M. J., Lou X. C., Ludwig J., Mannelli M., Marcellini S., Maringer G., Martin A. J., Martin J. P., Mashimo T., Mättig P., Maur U., McKenna J., McMahon T. J., McNutt J. R., Meijers F., Menszner D., Merritt F. S., Mes H., Michelini A., Middleton R. P., Mikenberg G., Mildenberger J., Miller D. J., Mir R., Mohr W., Moisan C., Montanari A., Mori T., Moss M. W., Mouthuy T., Nellen B., Nguyen H. H., Nozaki M., O'Neale S. W., O'Neill B. P., Oakham F. G., Odorici F., Ogg M., Ogren H. O., Oh H., Oram C. J., Oreglia M. J., Orito S., Pansart J. P., Panzer-Steindel B., Paschievici P., Patrick G. N., Pawley S. J., Pfister P., Pilcher J. E., Pinfold J. L., Plane D. E., Poffenberger P., Poli B., Pouladdej A., Prebys E., Pritchard T. W., Przysiezniak H., Quast G., Redmond M. W., Rees D. L., Riles K., Robins S. A., Robinson D., Rollnik A., Roney J. M., Ros E., Rossberg S., Rossi A. M., Routenburg P., Runge K., Runolfsson O., Rust D. R., Sanghera S., Sasaki M., Schaile A. D., Schaile O., Schappert W., Scharff-Hansen P., Schenk P., von der Schmitt H., Schreiber S., Schwarz J., Scott W. G., Settles M., Shen B. C., Sherwood P., Shypit R., Simon A., Singh P., Siroli G. P., Skuja A., Smith A. M., Smith T. J., Snow G. A., Sobie R., Springer R. W., Sproston M., Stephens K., Stier H. E., Ströhmer R., Strom D., Takeda H., Takeshita T., Taras P., Tarem S., Teixeira-Dias P., Thackray N. J., Transtromer G., Tsukamoto T., Turner M. F., Tysarczyk-Niemeyer G., Van den plas D., Van Kooten R., VanDalen G. J., Vasseur G., Virtue C. J., Wagner A., Wahl C., Walker J. P., Ward C. P., Ward D. R., Watkins P. M., Watson A. T., Watson N. K., Weber M., Weber P., Weisz S., Wells P. S., Wermes N., Weymann M., Whalley M. A., Wilson G. W., Wilson J. A., Wingerter I., Winterer V. H., Wood N. C., Wotton S., Wyatt T. R., Yaari R., Yang Y., Yekutieli G., Zacharov I., Zeuner W. & Zorn G. T.
(1991)
Physics Letters B.
268,
1,
p. 122-136
Using data from e+e- collisions collected with the OPAL detector during the 1990 LEP run, a search was mode for a low mass Higgs boson (H0) with arbitrary decay mode. The existence of a minimal standard model H0 with mass in the range 0 ≤ mH ≤ 11.3 GeV/c2 is excluded at the 95% confidence level for all possible decay modes of the H0. Limits on the production of Higgs bosons predicted by the minimal supersymmetric standard model and new scalar particles that couple to the Z0 are presented as a function of the scalar mass.
Acton P. D., Alexander G., Allison J., Allport P. P., Anderson K. J., Arcelli S., Armitage J. C., Ashton P., Astbury A., Axen D., Azuelos G., Bahan G. A., Baines J. T., Ball A. H., Banks J., Barker G. J., Barlow R. J., Batley J. R., Beaudoin G., Beck A., Becker J., Behnke T., Bell K. W., Bella G., Bethke S., Biebel O., Binder U., Bloodworth I. J., Bock P., Boden B., Bosch H. M., Bougerolle S., Brabson B. B., Breuker H., Brown R. M., Brun R., Buijs A., Burckhart H. J., Capiluppi P., Carnegie R. K., Carter A. A., Carter J. R., Chang C. Y., Charlton D. G., Chrin J. T., Clarke P. E., Cohen I., Collins W. J., Conboy J. E., Cooper M., Couch M., Coupland M., Cuffiani M., Dado S., Dallavalle G. M., De Jong S., Debu P., Del Pozo L., Deninno M. M., Dieckmann A., Dittmar M., Dixit M. S., Duchovni E., Duckeck G., Duerdoth I. P., Dumas D. J., Eckerlin G., Elcombe P. A., Estabrooks P. G., Etzion E., Fabbri F., Fincke-Keeler M., Fischer H. M., Fong D. G., Fukunaga C., Gaidot A., Ganel O., Gary J. W., Gascon J., McGowan R. F., Geddes N. I., Geich-Gimbel C., Gensler S. W., Gentit F. X., Giacomelli G., Gibson V., Gibson W. R., Gillies J. D., Goldberg J., Goodrick M. J., Gorn W., Grandi C., Grant F. C., Gross E., Hagemann J., Hanson G. G., Hansroul M., Hargrove C. K., Harrison P. F., Hart J., Hattersley P. M., Hauschild M., Hawkes C. M., Heflin E., Hemingway R. J., Heuer R. D., Hill J. C., Hillier S. J., Hinshaw D. A., Ho C., Hobbs J. D., Hobson P. R., Hochman D., Holl B., Homer R. J., Hou S. R., Howarth C. P., Hughes-Jones R. E., Humbert R., Igo-Kemenes P., Ihssen H., Imrie D. C., Janissen L., Jawahery A., Jeffreys P. W., Jeremie H., Jimack M., Jobes M., Jones R. W., Jovanovic P., Karlen D., Kawagoe K., Kawamoto T., Keeler R. K., Kellogg R. G., Kennedy B. W., Kleinwort C., Klem D. E., Kobayashi T., Kokott T. P., Komamiya S., Köpke L., Kowalewski R., Kreutzmann H., von Krogh J., Kroll J., Kuwano M., Kyberd P., Lafferty G. D., Lamarche F., Larson W. J., Layter J. G., Le Du P., Leblanc P., Lee A. M., Lehto M. H., Lellouch D., Lennert P., Leroy C., Lessard L., Letts J., Levegrün S., Levinson L., Lloyd S. L., Loebinger F. K., Lorah J. M., Lorazo B., Losty M. J., Lou X. C., Ludwig J., Mannelli M., Marcellini S., Maringer G., Martin A. J., Martin J. P., Mashimo T., Mättig P., Maur U., McKenna J., McMahon T. J., McNutt J. R., Meijers F., Menszner D., Merritt F. S., Mes H., Michelini A., Middleton R. P., Mikenberg G., Mildenberger J., Miller D. J., Milstene C., Mir R., Mohr W., Moisan C., Montanari A., Mori T., Moss M. W., Mouthuy T., Nellen B., Nguyen H. H., Nozaki M., O'Neale S. W., O'Neill B. P., Oakham F. G., Odorici F., Ogg M., Ogren H. O., Oh H., Oram C. J., Oreglia M. J., Orito S., Pansart J. P., Panzer-Steindel B., Paschievici P., Patrick G. N., Pawley S. J., Pfister P., Pilcher J. E., Pinfold J. L., Plane D. E., Poffenberger P., Poli B., Pouladdej A., Prebys E., Pritchard T. W., Przysiezniak H., Quast G., Redmond M. W., Rees D. L., Riles K., Robins S. A., Robinson D., Rollnik A., Roney J. M., Ros E., Rossberg S., Rossi A. M., Routenburg P., Runge K., Runolfsson O., Rust D. R., Sanghera S., Sasaki M., Schaile A. D., Schaile O., Schappert W., Scharff-Hansen P., Schenk P., von der Schmitt H., Schreiber S., Schwarz J., Scott W. G., Settles M., Shen B. C., Sherwood P., Shypit R., Simon A., Singh P., Siroli G. P., Skuja A., Smith A. M., Smith T. J., Snow G. A., Sobie R., Springer R. W., Sproston M., Stephens K., Stier H. E., Ströhmer R., Strom D., Takeda H., Takeshita T., Taras P., Tarem S., Teixeira-Dias P., Thackray N. J., Transtromer G., Tsukamoto T., Turner M. F., Tysarczyk-Niemeyer G., Van den plas D., Van Kooten R., VanDalen G. J., Vasseur G., Virtue C. J., Wagner A., Wahl C., Walker J. P., Ward C. P., Ward D. R., Watkins P. M., Watson A. T., Watson N. K., Weber M., Weber P., Weisz S., Wells P. S., Wermes N., Weymann M., Whalley M. A., Wilson G. W., Wilson J. A., Wingerter I., Winterer V. H., Wood N. C., Wotton S., Wyatt T. R., Yaari R., Yang Y., Yekutieli G., Zacharov I., Zeuner W. & Zorn G. T.
(1991)
Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics.
267,
1,
p. 143-153
Bose-Einstein correlations between like-sign charged track pairs have been studied in e+e- annihilation hadronic events at centre-of-mass energies around the Z0 peak as a function of Q, the four-momentum difference of the pair. The measurement was performed with the OPAL detector at LEP. Assuming the charged tracks to be pions, the observed Bose-Einstein enhancement was used to extract the values of the strength of the effect and the radius of the pion emitting source, which were found to be λ=0.866±0.032±0.140 and R0=0.928±0.019±0.150 fm, respectively, where the first error is statistical and the second is systematic. The results do not show significant variation in comparison to e+e- annihilation measurements at lower centre-of-mass energies. If non-pion track contamination is taken into account, the value of the strength λ becomes consistent with unity.
Akrawy M. Z., Alexander G., Allison J., Allport P. P., Anderson K. J., Armitage J. C., Arnison G. T., Ashton P., Azuelos G., Baines J. T., Ball A. H., Banks J., Barker G. J., Barlow R. J., Batley J. R., Beaudoin G., Beck A., Becker J., Behnke T., Bell K. W., Bella G., Bethke S., Biebel O., Binder U., Boodworth I. J., Bock P., Breuker H., Brown R. M., Brun R., Buijs A., Burckhart H. J., Capiluppi P., Carnegie R. K., Carter A. A., Carter J. R., Chang C. Y., Charlton D. G., Chrin J. T., Clarke P. E., Cohen I., Collins W. J., Conboy J. E., Couch M., Coupland M., Cuffiani M., Dado S., Dallavalle G. M., De Jong S., Debu P., Deninno M. M., Dieckmann A., Dittmar M., Dixit M. S., Duchovni E., Duerdoth I. P., Dumas D. J., Elcombe P. A., Estabrooks P. G., Etzion E., Fabbri F., Farthouat P., Fischer H. M., Fong D. G., French M. T., Fukunaga C., Gaidot A., Ganel O., Gary J. W., Gascon J., Geddes N. I., Gee C. N., Geich-Gimbel C., Gensler S. W., Gentit F. X., Giacomelli G., Gibson V., Gibson W. R., Gillies J. D., Goldberg J., Goodrick M. J., Gorn W., Granite D., Gross E., Grunhaus J., Hagedorn H., Hagemann J., Hansroul M., Hargrove C. K., Harrus I., Hart J., Hattersley P. M., Hauschild M., Hawkes C. M., Heflin E., Hemingway R. J., Heuer R. D., Hill J. C., Hillier S. J., Hinshaw D. A., Ho C., Hobbs J. D., Hobson P. R., Hochman D., Holl B., Homer R. J., Hou S. R., Howarth C. P., Hughes-Jones R. E., Humbert R., Igo-Kemenes P., Ihssen H., Imrie D. C., Janissen L., Jawahery A., Jeffreys P. W., Jeremie H., Jimack M., Jobes M., Jones R. W., Jovanovic P., Karlen D., Kawagoe K., Kawamoto T., Kellogg R. G., Kennedy B. W., Kleinwort C., Klem D. E., Knop G., Kobayashi T., Kokott T. P., Köpke L., Kowalewski R., Kreutzmann H., Kroll J., Kuwano M., Kyberd P., Lafferty G. D., Lamarche F., Larson W. J., Layter J. G., Le Du P., Leblanc P., Lee A. M., Lehto M. H., Lellouch D., Lennert P., Leroy C., Lessard L., Levegrün S., Levinson L., Lloyd S. L., Loebinger F. K., Lorah J. M., Lorazo B., Losty M. J., Ludwig J., Ma J., Macbeth A. A., Mannelli M., Marcellini S., Maringer G., Martin A. J., Martin J. P., Mashimo T., Mättig P., Maur U., McMahon T. J., McNutt J. R., Meijers F., Menszner D., Merritt F. S., Mes H., Michelini A., Middleton R. P., Mikenberg G., Mildenberger J., Miller D. J., Milstene C., Minowa M., Mohr W., Moisan C., Montanari A., Mori T., Moss M. W., Murphy P. G., Murray W. J., Nellen B., Nguyen H. H., Nozaki M., O'Dowd A. J., O'Neale S. W., O'Neill B. P., Oakham F. G., Odorici F., Ogg M., Oh H., Oreglia M. J., Orito S., Pansart J. P., Patrick G. N., Pawley S. J., Pfister P., Pilcher J. E., Pinfold J. L., Plane D. E., Poli B., Pouladdej A., Prebys E., Pritchard T. W., Przysiezniak H., Quast G., Redmond M. W., Rees D. L., Regimbald M., Riles K., Roach C. M., Robins S. A., Rollnik A., Roney J. M., Rossberg S., Rossi A. M., Routenburg P., Runge K., Runolfsson O., Sanghera S., Sansum R. A., Sasaki M., Saunders B. J., Schaile A. D., Schaile O., Schappert W., Scharff-Hansen P., Schreiber S., Schwarz J., Shapira A., Shen B. C., Sherwood P., Simon A., Singh P., Siroli G. P., Skuja A., Smith A. M., Smith T. J., Snow G. A., Springer R. W., Sproston M., Stephens K., Stier H. E., Stroehmer R., Strom D., Takeda H., Takeshita T., Taras P., Thackray N. J., Tsukamoto T., Turner M. F., Tysarczyk-Niemeyer G., Van den plas D., Van Kooten R., VanDalen G. J., Vasseur G., Virtue C. J., von der Schmitt H., von Krogh J., Wagner A., Wahl C., Walker J. P., Ward C. P., Ward D. R., Watkins P. M., Watson A. T., Watson N. K., Weber M., Weisz S., Wells P. S., Wermes N., Waymann M., Wilson G. W., Wilson J. A., Wingerter I., Winterer V. H., Wood N. C., Wotton S., Wyatt T. R., Yaari R., Yang Y., Yekutieli G., Yoshida T., Zeuner W. & Zorn G. T.
(1991)
European Physical Journal C.
50,
p. 373-384
The OPAL detector at LEP is used to measure the branching ratio of the Z0 into invisible particles by measuring the cross section of single photon events in e+e- collisions at centre-of-mass energies near the Z0 resonance. In a data sample of 5.3 pb-1, we observe 73 events with single photons depositing more than 1.5 GeV in the electromagnetic calorimeter, with an expected background of 8±2 events not associated with invisible Z0 decay. With this data we determine the Z0 invisible width to be 0.50±0.07±0.03 GeV, where the first error is statistical and the second systematic. This corresponds to 3.0±0.4±0.2 light neutrino generations in the Standard Model.
Akrawy M. Z., Alexander G., Allison J., Allport P. P., Anderson K. J., Armitage J. C., Arnison G. T., Ashton P., Azuelos G., Baines J. T., Ball A. H., Banks J., Barker G. J., Barlow R. J., Batley J. R., Beck A., Becker J., Behnke T., Bell K. W., Bella G., Bethke S., Biebel O., Binder U., Bloodworth I. J., Bock P., Breuker H., Brown R. M., Brun R., Buijs A., Burckhart H. J., Capiluppi P., Carnegie R. K., Carter A. A., Carter J. R., Chang C. Y., Charlton D. G., Chrin J. T., Clarke P. E., Cohen I., Collins W. J., Conboy J. E., Couch M., Coupland M., Cuffiani M., Dado S., Dallavalle G. M., Debu P., Deninno M. M., Dieckmann A., Dittmar M., Dixit M. S., Duchovni E., Duerdoth I. P., Dumas D. J., Elcombe P. A., Estabrooks P. G., Etzion E., Fabbri F., Farthouat P., Fischer H. M., Fong D. G., French M. T., Fukunaga C., Gaidot A., Ganel O., Gary J. W., Gascon J., Geddes N. I., Gee C. N., Geich-Gimbel C., Gensler S. W., Gentit F. X., Giacomelli G., Gibson V., Gibson W. R., Gillies J. D., Goldberg J., Goodrick M. J., Gorn W., Granite D., Gross E., Grunhaus J., Hagedorn H., Hagemann J., Hansroul M., Hargrove C. K., Harrus I., Hart J., Hattersley P. M., Hauschild M., Hawkes C. M., Heflin E., Hemingway R. J., Heuer R. D., Hill J. C., Hillier S. J., Ho C., Hobbs J. D., Hobson P. R., Hochman D., Holl B., Homer R. J., Hou S. R., Howarth C. P., Hughes-Jones R. E., Humbert R., Igo-Kemenes P., Ihssen H., Imrie D. C., Janissen L., Jawahery A., Jeffreys P. W., Jeremie H., Jimack M., Jobes M., Jones R. W., Jovanovic P., Karlen D., Kawagoe K., Kawamoto T., Kellogg R. G., Kennedy B. W., Kleinwort C., Klem D. E., Knop G., Kobayashi T., Kokott T. P., Köpke L., Kowalewski R., Kreutzmann H., Kroll J., Kuwano M., Kyberd P., Lafferty G. D., Lamarche F., Larson W. J., Layter J. G., Le Du P., Leblanc P., Lee A. M., Lehto M. H., Lellouch D., Lennert P., Lessard L., Levinson L., Lloyd S. L., Loebinger F. K., Lorah J. M., Lorazo B., Losty M. J., Ludwig J., Ma J., Macbeth A. A., Mannelli M., Marcellini S., Maringer G., Martin A. J., Martin J. P., Mashimo T., Mättig P., Maur U., McMahon T. J., McNutt J. R., Meijers F., Menszner D., Merritt F. S., Mes H., Michelini A., Middleton R. P., Mikenberg G., Mildenberger J., Miller D. J., Milstene C., Minowa M., Mohr W., Montanari A., Mori T., Moss M. W., Murphy P. G., Murray W. J., Nellen B., Nguyen H. H., Nozaki M., O'Dowd A. J., O'Neale S. W., O'Neill B. P., Oakham F. G., Odorici F., Ogg M., Oh H., Oreglia M. J., Orito S., Pansart J. P., Patrick G. N., Pawley S. J., Pfister P., Pilcher J. E., Pinfold J. L., Plane D. E., Poli B., Pouladdej A., Prebys E., Pritchard T. W., Quast G., Raab J., Redmond M. W., Rees D. L., Regimbald M., Riles K., Roach C. M., Robins S. A., Rollnik A., Roney J. M., Rossberg S., Rossi A. M., Routenburg P., Runge K., Runolfsson O., Sanghera S., Sansum R. A., Sasaki M., Saunders B. J., Schaile A. D., Schaile O., Schappert W., Scharff-Hansen P., Schreiber S., Schwarz J., Shapira A., Shen B. C., Sherwood P., Simon A., Singh P., Siroli G. P., Skuja A., Smith A. M., Smith T. J., Snow G. A., Springer R. W., Sproston M., Stephens K., Stier H. E., Stroehmer R., Strom D., Takeda H., Takeshita T., Taras P., Thackray N. J., Tsukamoto T., Turner M. F., Tysarczyk-Niemeyer G., Van den plas D., VanDalen G. J., Vasseur G., Virtue C. J., von der Schmitt H., von Krogh J., Wagner A., Wahl C., Walker J. P., Ward C. P., Ward D. R., Watkins P. M., Watson A. T., Watson N. K., Weber M., Weisz S., Wells P. S., Wermes N., Weymann M., Wilson G. W., Wilson J. A., Wingerter I., Winterer V. H., Wood N. C., Wotton S., Wuensch B., Wyatt T. R., Yaari R., Yang Y., Yekutieli G., Yoshida T., Zeuner W. & Zorn G. T.
(1991)
Zeitschrift fur Physik C-Particles and Fields.
49,
p. 375-384
Jet production rates in hadronic Z0 decays are studied using four different recombination schemes to define resolvable jets. The strong coupling constant αs( {Mathematical expression}) is determined in fits of the corresponding O(αs2) QCD calculations to the differential 2-jet distributions D2(y). Hadronisation corrections and renormalisation scale uncertainties are found to be different for each recombination scheme. Within their overall systematic uncertainties, the four schemes yield consistent values of αs( {Mathematical expression}), leading to a final result of {Mathematical expression}. The error includes the experimental uncertainties (±0.003), uncertainties of hadronisation corrections and of the degree of parton virtualities to which the data are corrected, as well as the uncertainty of choosing the renormalisation scale.
Alexander G., Allison J., Allport P. P., Anderson K. J., Arcelli S., Armitage J. C., Ashton P., Astbury A., Axen D., Azuelos G., Bahan G. A., Baines J. T., Ball A. H., Banks J., Barker G. J., Barlow R. J., Batley J. R., Beaudoin G., Beck A., Becker J., Behnke T., Bell K. W., Bella G., Bethke S., Biebel O., Binder U., Bloodworth I. J., Bock P., Bosch H. M., Bougerolle S., Brabson B. B., Breuker H., Brown R. M., Brun R., Buijs A., Bruckhart H. J., Capiluppi P., Carnegie R. K., Carter A. A., Carter J. R., Chang C. Y., Charlton D. G., Chrin J. T., Clarke P. E., Cohen I., Collins W. J., Conboy J. E., Cooper M., Couch M., Coupland M., Cuffiani M., Dado S., Dallavalle G. M., De Jong S., Debu P., Deninno M. M., Dieckmann A., Dittmar M., Dixit M. S., Duchovni E., Duckeck G., Duerdoth I. P., Dumas D. J., Eckerlin G., Elcombe P. A., Estabrooks P. G., Etzion E., Fabbri F., Fincke-Keeler M., Fischer H. M., Fong D. G., Fukunaga C., Gaidot A., Ganel O., Gary J. W., Gascon J., McGowan R. F., Geddes N. I., Geich-Gimbel C., Gensler S. W., Gentit F. X., Giacomelli G., Gibson V., Gibson W. R., Gillies J. D., Goldberg J., Goodrick M. J., Gorn W., Grandi C., Gross E., Hagemann J., Hanson G. G., Hansroul M., Hargrove C. K., Harrison P. F., Hart J., Hattersley P. M., Hauschild M., Hawkes C. M., Heflin E., Hemingway R. J., Heuer R. D., Hill J. C., Hillier S. J., Hinshaw D. A., Ho C., Hobbs J. D., Hobson P. R., Hochman D., Holl B., Homer R. J., Hou S. R., Howarth C. P., Hughes-Jones R. E., Humbert R., Igo-Kemenes P., Ihssen H., Imrie D. C., Janissen L., Jawahery A., Jeffreys P. W., Jeremie H., Jimack M., Jobes M., Jones R. W., Jovanovic P., Karlen D., Kawagoe K., Kawamoto T., Keeler R. K., Kellogg R. G., Kennedy B. W., Kleinwort C., Klem D. E., Kobayashi T., Kokott T. P., Komamiya S., Köpke L., Kowalewski R., Kreutzmann H., von Krogh J., Kroll J., Kuwano M., Kyberd P., Lafferty G. D., Lamarche F., Larson W. J., Layter J. G., Le Du P., Leblanc P., Lee A. M., Lehto M. H., Lellouch D., Lennert P., Leroy C., Lessard L., Levegrün S., Levinson L., Lloyd S. L., Loebinger F. K., Lorah J. M., Lorazo B., Losty M. J., Lou X. C., Ludwig J., Mannelli M., Marcellini S., Maringer G., Martin A. J., Martin J. P., Mashimo T., Mättig P., Maur U., McMahon T. J., McNutt J. R., Meijers F., Menszner D., Merritt F. S., Mes H., Michelini A., Middleton R. P., Mikenberg G., Mildenberger J., Miller D. J., Milstene C., Mir R., Mohr W., Moisan C., Montanari A., Mori T., Moss M. W., Mouthuy T., Murphy P. G., Nellen B., Nguyen H. H., Nozaki M., O'Neale S. W., O'Neill B. P., Oakham F. G., Odorici F., Ogg M., Ogren H. O., Oh H., Oram C. J., Oreglia M. J., Orito S., Pansart J. P., Panzer-Steindel B., Paschievici P., Patrick G. N., Pawley S. J., Pfister P., Pilcher J. E., Pinfold J. L., Plane D. E., Poffenberger P., Poli B., Pouladdej A., Prebys E., Pritchard T. W., Przysiezniak H., Quast G., Redmond M. W., Rees D. L., Riles K., Robins S. A., Robinson D., Rollnik A., Roney J. M., Rossberg S., Rossi A. M., Routenburg P., Runge K., Runolfsson O., Rust D. R., Sanghera S., Sasaki M., Schaile A. D., Schaile O., Schappert W., Scharff-Hansen P., Schenk P., von der Schmitt H., Schreiber S., Schwarz J., Scott W. G., Settles M., Shen B. C., Sherwood P., Shypit R., Simon A., Singh P., Siroli G. P., Skuja A., Smith A. M., Smith T. J., Snow G. A., Sobie R., Springer R. W., Sproston M., Stephens K., Stier H. E., Strom D., Takeda H., Takeshita T., Taras P., Tarem S., Teixeira-Dias P., Thackray N. J., Tsukamoto T., Turner M. F., Tysarczyk-Niemeyer G., Van den plas D., Van Kooten R., VanDalen G. J., Vasseur G., Virtue C. J., Wagner A., Wahl C., Walker J. P., Ward C. P., Ward D. R., Watkins P. M., Watson A. T., Watson N. K., Weber M., Weisz S., Wells P. S., Wermes N., Weymann M., Whalley M. A., Wilson G. W., Wilson J. A., Wingerter I., Winterer V. H., Wood N. C., Wotton S., Wyatt T. R., Yaari R., Yang Y., Yekutieli G., Zacharov I., Zeuner W. & Zorn G. T.
(1991)
Physics Letters B.
266,
3-4,
p. 485-496
The production of J/ψ mesons in multihadronic Z0 decays has been observed in the e+e- and β+β- final states. From a sample of approximately 45 reconstructed J ψ mesons, the inclusive branching fraction is measured to be Br(Z0→J/ψ + X) = (4.5±0.8±0.4±0.6) × 10-3, where the first error is statistical, the second systematic, and the third error is due to the uncertainty in the leptonic decay rate of the J/ψ. The J/ψ energy distribution is consistent with the distribution expected from B hadron decays. The average B hadron lifetime is calculated from the measured distances between the primary and J/ψ vertices, resulting in τB = 1.32-0.25+0.31±0.15 ps, where the first error is statistical and the second systematic.
Alexander G., Allison J., Allport P. P., Anderson K. J., Arcelli S., Armitage J. C., Ashton P., Astbury A., Axen D., Azuelos G., Bahan G. A., Baines J. T., Ball A. H., Banks J., Barker G. J., Barlow R. J., Batley J. R., Beaudoin G., Beck A., Becker J., Behnke T., Bell K. W., Bella G., Bethke S., Biebel O., Binder U., Bloodworth I. J., Bock P., Bosch H. M., Bougerolle S., Brabson B. B., Breuker H., Brown R. M., Brun R., Buijs A., Burckhart H. J., Capiluppi P., Carnegie R. K., Carter A. A., Carter J. R., Chang C. Y., Charlton D. G., Chrin J. T., Clarke P. E., Cohen I., Collins W. J., Conboy J. E., Cooper M., Couch M., Coupland M., Cuffiani M., Dado S., Dallavalle G. M., De Jong S., Debu P., Deninno M. M., Dieckmann A., Dittmar M., Dixit M. S., Duchovni E., Duckeck G., Duerdoth I. P., Dumas D. J., Eckerlin G., Elcombe P. A., Estabrooks P. G., Etzion E., Fabbri F., Fincke-Keeler M., Fischer H. M., Fong D. G., Fukunaga C., Gaidot A., Ganel O., Gary J. W., Gascon J., McGowan R. F., Geddes N. I., Geich-Gimbel C., Gensler S. W., Gentit F. X., Giacomelli G., Gibson V., Gibson W. R., Gillies J. D., Goldberg J., Goodrick M. J., Gorn W., Grandi C., Gross E., Hagemann J., Hanson G. G., Hansroul M., Hargrove C. K., Harrison P. F., Hart J., Hattersley P. M., Hauschild M., Hawkes C. M., Heflin E., Hemingway R. J., Heuer R. D., Hill J. C., Hillier S. J., Hinshaw D. A., Ho C., Hobbs J. D., Hobson P. R., Hochman D., Holl B., Homer R. J., Hou S. R., Howarth C. P., Hughes-Jones R. E., Humbert R., Igo-Kemenes P., Ihssen H., Imrie D. C., Janissen L., Jawahery A., Jeffreys P. W., Jeremie H., Jimack M., Jobes M., Jones R. W., Jovanovic P., Karlen D., Kawagoe K., Kawamoto T., Keeler R. K., Kellogg R. G., Kennedy B. W., Kleinwort C., Klem D. E., Kobayashi T., Kokott T. P., Komamiya S., Köpke L., Kowalewski R., Kreutzmann H., von Krogh J., Kroll J., Kuwano M., Kyberd P., Lafferty G. D., Lamarche F., Larson W. J., Layter J. G., Le Du P., Leblanc P., Lee A. M., Lehto M. H., Lellouch D., Lennert P., Leroy C., Lessard L., Levegrün S., Levinson L., Lloyd S. L., Loebinger F. K., Lorah J. M., Lorazo B., Losty M. J., Lou X. C., Ludwig J., Mannelli M., Marcellini S., Maringer G., Martin A. J., Martin J. P., Mashimo T., Mättig P., Maur U., McMahon T. J., McNutt J. R., Meijers F., Menszner D., Merritt F. S., Mes H., Michelini A., Middleton R. P., Mikenberg G., Mildenberger J., Miller D. J., Milstene C., Mir R., Mohr W., Moisan C., Montanari A., Mori T., Moss M. W., Mouthuy T., Murphy P. G., Nellen B., Nguyen H. H., Nozaki M., O'Neale S. W., O'Neill B. P., Oakham F. G., Odorici F., Ogg M., Ogren H. O., Oh H., Oram C. J., Oreglia M. J., Orito S., Pansart J. P., Panzer-Steindel B., Paschievici P., Patrick G. N., Pawley S. J., Pfister P., Pilcher J. E., Pinfold J. L., Plane D. E., Poffenberger P., Poli B., Pouladdej A., Prebys E., Pritchard T. W., Przysiezniak H., Quast G., Redmond M. W., Rees D. L., Riles K., Robins S. A., Robinson D., Rollnik A., Roney J. M., Rossberg S., Rossi A. M., Routenburg P., Runge K., Runolfsson O., Rust D. R., Sanghera S., Sasaki M., Schaile A. D., Schaile O., Schappert W., Scharff-Hansen P., Schenk P., von der Schmitt H., Schreiber S., Schwarz J., Scott W. G., Settles M., Shen B. C., Sherwood P., Shypit R., Simon A., Singh P., Siroli G. P., Skuja A., Smith A. M., Smith T. J., Snow G. A., Sobie R., Springer R. W., Sproston M., Stephens K., Stier H. E., Strom D., Takeda H., Takeshita T., Taras P., Tarem S., Teixeira-Dias P., Thackray N. J., Tsukamoto T., Turner M. F., Tysarczyk-Niemeyer G., Van den plas D., Van Kooten R., VanDalen G. J., Vasseur G., Virtue C. J., Wagner A., Wahl C., Walker J. P., Ward C. P., Ward D. R., Watkins P. M., Watson A. T., Watson N. K., Weber M., Weisz S., Wells P. S., Wermes N., Weymann M., Whalley M. A., Wilson G. W., Wilson J. A., Wingerter I., Winterer V. H., Wood N. C., Wotton S., Wyatt T. R., Yaari R., Yang Y., Yekutieli G., Zacharov I., Zeuner W. & Zorn G. T.
(1991)
Physics Letters B.
266,
1-2,
p. 201-217
From a sample of 3308 e+e- → τ+τ- events with an estimated background of 1.9%, we find 964 τ → eνν, 903 τ → μνν, and 309 τ → π(K)ν candidates. Efficiency and background estimates determined from both Monte Carlo and control sample studies yield the following branching ratios: B(τ → eνν) = 17.4 ± 0.5 (stat) ± 0.4 (sys)%, B(τ → μνν) = 16.8 ± 0.5 ± 0.4%, and B(τ → π(K)ν) = 12.1 ± 0.7 ± 0.5%. These values are in good agreement with previous measurements. The measured lepton branching ratios, when combined with the world-average measured value for the τ lifetime, yield a ratio of the τ Fermi coupling constant to that of the lighter leptons given by Gτ/Ge,μ = 0.92 ± 0.04, where it is assumed Ge = Gμ ≡ Ge,μ. The average τ polarization at the Z° resonance is measured to be -0.01±0.09 from an analysis of the momentum spectra of the electron, muon, and pion candidates, implying that the ratio of vector to axial vector couplings of the τ to the Z° is ντ/ατ = 0.01 ± 0.04. The measurements of the average polarizations in the forward and backward hemispheres lead to the efficiency-corrected, forward-backward polarization asymmetry AFBpol = -0.22 ± 0.10, implying for the electron couplings to the Z° the ratio νe/αe = 0.15±0.07. Since these values for the tau and electron couplings are consistent with one another, we assume lepton universality to derive ν/α = 0.05 ± 0.04 and a value for the weak mixing angle of sin2θW = 0.237 ± 0.009, with no ambiguity introduced by the relative signs of ν and α.
Alexander G., Allison J., Allport P. P., Anderson K. J., Arcelli S., Armitage J. C., Ashton P., Astbury A., Axen D., Azuelos G., Bahan G. A., Baines J. T., Ball A. H., Banks J., Barker G. J., Barlow R. J., Batley J. R., Beaudoin G., Beck A., Becker J., Behnke T., Bell K. W., Bella G., Bethke S., Biebel O., Binder U., Bloodworth I. J., Bock P., Bosch H. M., Bougerolle S., Brabson B. B., Breuker H., Brown R. M., Brun R., Buijs A., Burckhart H. J., Capiluppi P., Carnegie R. K., Carter A. A., Carter J. R., Chang C. Y., Charlton D. G., Chrin J. T., Clarke P. E., Cohen I., Collins W. J., Conboy J. E., Cooper M., Couch M., Coupland M., Cuffiani M., Dado S., Dallavalle G. M., De Jong S., Debu P., Deninno M. M., Dieckmann A., Dittmar M., Dixit M. S., Duchovni E., Duckeck G., Duerdoth I. P., Dumas D. J., Eckerlin G., Elcombe P. A., Estabrooks P. G., Etzion E., Fabbri F., Fincke-Keeler M., Fischer H. M., Fong D. G., Fukunaga C., Gaidot A., Ganel O., Gary J. W., Gascon J., McGowan R. F., Geddes N. I., Geich-Gimbel C., Gensler S. W., Gentit F. X., Giacomelli G., Gibson V., Gibson W. R., Gillies J. D., Goldberg J., Goodrick M. J., Gorn W., Grandi C., Gross E., Hagemann J., Hanson G. G., Hansroul M., Hargrove C. K., Harrison P. F., Hart J., Hattersley P. M., Hauschild M., Hawkes C. M., Heflin E., Hemingway R. J., Heuer R. D., Hill J. C., Hillier S. J., Hinshaw D. A., Ho C., Hobbs J. D., Hobson P. R., Hochman D., Holl B., Homer R. J., Hou S. R., Howarth C. P., Hughes-Jones R. E., Humbert R., Igo-Kememes P., Ihssen H., Imrie D. C., Janissen L., Jawahery A., Jeffreys P. W., Jeremie H., Jimack M., Jobes M., Jones R. W., Jovanovic P., Karlen D., Kawagoe K., Kawamoto T., Keeler R. K., Kellogg R. G., Kennedy B. W., Kleinwort C., Klem D. E., Kobayashi T., Kokott T. P., Komamiya S., Köpke L., Kowalewski R., Kreutzmann H., von Krogh J., Kroll J., Kuwano M., Kyberd P., Lafferty G. D., Lamarche F., Larson W. J., Layter J. G., Le Du P., Leblanc P., Lee A. M., Lehto M. H., Lellouch D., Lennert P., Leroy C., Lessard L., Levegrün S., Levinson L., Lloyd S. L., Loebinger F. K., Lorah J. M., Lorazo B., Losty M. J., Lou X. C., Ludwig J., Mannelli M., Marcellini S., Maringer G., Martin A. J., Martin J. P., Mashimo T., Mättig P., Maur U., McMahon T. J., McNutt J. R., Meijers F., Menszner D., Merritt F. S., Mes H., Michelini A., Middleton R. P., Mikenberg G., Mildenberger J., Miller D. J., Milstene C., Mir R., Mohr W., Moisan C., Montanari A., Mori T., Moss M. W., Mouthuy T., Murphy P. G., Nellen B., Nguyen H. H., Nozaki M., O'Neale S. W., O'Neill B. P., Oakham F. G., Odorici F., Ogg M., Ogren H. O., Oh H., Oram C. J., Oreglia M. J., Orito S., Pansart J. P., Panzer-Steindel B., Paschievici P., Patrick G. N., Pawley S. J., Pfister P., Pilcher J. E., Pinfold J. L., Plane D. E., Poffenberger P., Poli B., Pouladdej A., Prebys E., Pritchard T. W., Przysiezniak H., Quast G., Redmond M. W., Rees D. L., Riles K., Robins S. A., Robinson D., Rollnik A., Roney J. M., Rossberg S., Rossi A. M., Routenburg P., Runge K., Runolfsson O., Rust D. R., Sanghera S., Sasaki M., Schaile A. D., Schaile O., Schappert W., Scharff-Hansen P., Schenk P., von der Schmitt H., Schreiber S., Schwarz J., Schwiening J., Scott W. G., Settles M., Shen B. C., Sherwood P., Shypit R., Simon A., Singh P., Siroli G. P., Skuja A., Smith A. M., Smith T. J., Snow G. A., Sobie R., Springer R. W., Sproston M., Stephens K., Stier H. E., Strom D., Takeda H., Takeshita T., Taras P., Tarem S., Teixeira-Dias P., Thackray N. J., Tsukamoto T., Turner M. F., Tysarczyk-Niemeyer G., Van den plas D., Van Kooten R., VanDalen G. J., Vasseur G., Virtue C. J., Wagner A., Wahl C., Walker J. P., Ward C. P., Ward D. R., Watkins P. M., Watson A. T., Watson N. K., Weber M., Weisz S., Wells P. S., Wermes N., Weymann M., Whalley M. A., Wilson G. W., Wilson J. A., Wingerter I., Winterer V. H., Wood N. C., Wotton S., Wyatt T. R., Yaari R., Yang Y., Yekutieli G., Zacharov I., Zeuner W. & Zorn G. T.
(1991)
Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics.
264,
3-4,
p. 467-475
The production of K0 mesons in e+e- interactions at center of mass energies in the region of the Z0 mass has been investigated with the OPAL detector at LEP. The rate is found to be 2.10±0.02±0.14 K0, Z0 per hadronic event. The predictions from the JETSET and HERWIG generators agree very well with both the rate and the scale invariant cross section (1/σhadβ) (dσ/dxE) for K0 production. Comparisons of the inclusive momentum spectrum with predictions of an analytical QCD formula and with data from lower center of mass energies are presented.
Alexander G., Allison J., Allport P. P., Anderson K. J., Arcelli S., Armitage J. C., Ashton P., Astbury A., Axen D., Azuelos G., Bahan G. A., Baines J. T., Ball A. H., Banks J., Barker G. J., Barlow R. J., Batley J. R., Beaudoin G., Beck A., Becker J., Behnke T., Bell K. W., Bella G., Bethke S., Biebel O., Binder U., Bloodworth I. J., Bock P., Bosch H. M., Bougerolle S., Brabson B. B., Breuker H., Brown R. M., Brun R., Buijs A., Burckhart H. J., Capiluppi P., Carnegie R. K., Carter A. A., Carter J. R., Chang C. Y., Charlton D. G., Chrin J. T., Clarke P. E., Cohen I., Collins W. J., Conboy J. E., Cooper M., Couch M., Coupland M., Cuffiani M., Dado S., Dallavalle G. M., De Jong S., Debu P., Deninno M. M., Dieckmann A., Dittmar M., Dixit M. S., Duchovni E., Duckeck G., Duerdoth I. P., Dumas D. J., Eckerlin G., Elcombe P. A., Estabrooks P. G., Etzion E., Fabbri F., Fincke-Keeler M., Fischer H. M., Fong D. G., Fukunaga C., Gaidot A., Ganel O., Gary J. W., Gascon J., McGowan R. F., Geddes N. I., Geich-Gimbel C., Gensler S. W., Gentit F. X., Giacomelli G., Gibson V., Gibson W. R., Gillies J. D., Goldberg J., Goodrick M. J., Gorn W., Grandi C., Gross E., Hagemann J., Hanson G. G., Hansroul M., Hargrove C. K., Harrison P. F., Hart J., Hattersley P. M., Hauschild M., Hawkes C. M., Heflin E., Hemingway R. J., Heuer R. D., Hill J. C., Hillier S. J., Hinshaw D. A., Ho C., Hobbs J. D., Hobson P. R., Hochman D., Holl B., Homer R. J., Hou S. R., Howarth C. P., Hughes-Jones R. E., Humbert R., Igo-Kemenes P., Ihssen H., Imrie D. C., Janissen L., Jawahery A., Jeffreys P. W., Jeremie H., Jimack M., Jobes M., Jones R. W., Jovanovic P., Karlen D., Kawagoe K., Kawamoto T., Keeler R. K., Kellogg R. G., Kennedy B. W., Kleinwort C., Klem D. E., Kobayashi T., Kokott T. P., Komamiya S., Köpke L., Kowalewski R., Kreutzmann H., von Krogh J., Kroll J., Kuwano M., Kyberd P., Lafferty G. D., Lamarche F., Larson W. J., Layter J. G., Le Du P., Leblanc P., Lee A. M., Lehto M. H., Lellouch D., Lennert P., Leroy C., Lessard L., Levegrün S., Levinson L., Lloyd S. L., Loebinger F. K., Lorah J. M., Lorazo B., Losty M. J., Lou X. C., Ludwig J., Mannelli M., Marcellini S., Maringer G., Martin A. J., Martin J. P., Mashimo T., Mättig P., Maur U., McMahon T. J., McNutt J. R., Meijers F., Menszner D., Merritt F. S., Mes H., Michelini A., Middleton R. P., Mikenberg G., Mildenberger J., Miller D. J., Milstene C., Mir R., Mohr W., Moisan C., Montanari A., Mori T., Moss M. W., Mouthuy T., Murphy P. G., Nellen B., Nguyen H. H., Nozaki M., O'Neale S. W., O'Neill B. P., Oakham F. G., Odorici F., Ogg M., Ogren H. O., Oh H., Oram C. J., Oreglia M. J., Orito S., Pansart J. P., Panzer-Steindel B., Paschievici P., Patrick G. N., Pawley S. J., Pfister P., Pilcher J. E., Pinfold J. L., Plane D. E., Poffenberger P., Poli B., Pouladdej A., Prebys E., Pritchard T. W., Przysiezniak H., Quast G., Redmond M. W., Rees D. L., Riles K., Robins S. A., Robinson D., Rollnik A., Roney J. M., Rossberg S., Rossi A. M., Routenburg P., Runge K., Runolfsson O., Rust D. R., Sanghera S., Sasaki M., Schaile A. D., Schaile O., Schappert W., Scharff-Hansen P., Schenk P., von der Schmitt H., Schreiber S., Schwarz J., Scott W. G., Settles M., Shen B. C., Sherwood P., Shypit R., Simon A., Singh P., Siroli G. P., Skuja A., Smith A. M., Smith T. J., Snow G. A., Sobie R., Springer R. W., Sproston M., Stephens K., Stier H. E., Strom D., Takeda H., Takeshita T., Taras P., Tarem S., Teixeira-Diaz P., Thackray N. J., Tsukamoto T., Turner M. F., Tysarczyk-Niemeyer G., Van den plas D., Van Kooten R., VanDalen G. K., Vasseur G., Virtue C. J., Wagner A., Wahl C., Walker J. P., Ward C. P., Ward D. R., Watkins P. M., Watson A. T., Watson N. K., Weber M., Weisz S., Wells P. S., Wermes N., Weymann M., Whalley M. A., Wilson G. W., Wilson J. A., Wingerter I., Winterer V. H., Wood N. C., Wotton S., Wyatt T. R., Yaari R., Yang Y., Yekutieli G., Zacharov I., Zeuner W. & Zorn G. T.
(1991)
Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics.
263,
1,
p. 123-134
A search for scalar leptoquarks has been performed with data from the OPAL detector at the e+e- storage ring LEP. In a data sample corresponding to an integrated luminosity of 6.3 pb-1 no evidence for leptoquark production was observed where the leptoquark decays into a quark and either a charged lepton (e, μ, τ) or a neutrino. An upper limit of 1.7 pb on the production cross section for leptoquarks is obtainedassuming a branching ratio of 50% for the decay of the leptoquark into the channels with a charged lepton. Lower limits on the leptoquark mass between 41.4 and 46.4 GeV/c2 at 95% CL are obtained, depending on the effecte SU(2) × U(1) invariant couplings assigned to the leptoquark.
Alexander G., Allison J., Allport P. P., Anderson K. J., Arcelli S., Armitage J. C., Ashton P., Astbury A., Axen D., Azuelos G., Bahan G. A., Baines J. T., Ball A. H., Banks J., Barker G. J., Barlow R. J., Batley J. R., Beaudoin G., Beck A., Becker J., Behnke T., Bell K. W., Bella G., Bethke S., Biebel O., Binder U., Bloodworth I. J., Bock P., Bosch H. M., Bougerolle S., Brabson B. B., Breuker H., Brown R. M., Brun R., Buijs A., Burckhart H. J., Capiluppi P., Carnegie R. K., Carter A. A., Carter J. R., Chang C. Y., Charlton D. G., Chrin J. T., Clarke P. E., Cohen I., Collins W. J., Conboy J. E., Cooper M., Couch M., Coupland M., Cuffiani M., Dado S., Dallavalle G. M., De Jong S., Debu P., Deninno M. M., Dieckmann A., Dittmar M., Dixit M. S., Duchovni E., Duckeck G., Duerdoth I. P., Dumas D. J., Eckerlin G., Elcombec P. A., Estabrooks P. G., Etzion E., Fabbri F., Fincke-Keeler M., Fischer H. M., Fong D. G., Fukunaga C., Gaidot A., Ganel O., Gary J. W., Gascon J., McGowan R. F., Geddes N. I., Geich-Gimbel C., Gensler S. W., Gentit F. X., Giacomelli G., Gibson V., Gibson W. R., Gilles J. D., Goldberg J., Goodrick M. J., Corn W., Grandi C., Gross E., Hagemann J., Hanson G. G., Hansroul M., Hargrove C. K., Harrison P. F., Hart J., Hattersley P. M., Hauschild M., Hawkes C. M., Heflin E., Hemingway R. J., Heuer R. D., Hill J. C., Hillier S. J., Hinshaw D. A., Ho C., Hobbs J. D., Hobson P. R., Hochman D., Holl B., Homer R. J., Hou S. R., Howarth C. P., Hughes-Jones R. E., Humbert R., Igo-Kemenes P., Ihssen H., Imrie D. C., Janissen L., Jawahery A., Jeffreys P. W., Jeremie H., Jimack M., Jobes M., Jones R. W., Jovanovic P., Karlen D., Kawagoe K., Kawamoto T., Keeler R. K., Kellogg R. G., Kennedy B. W., Kleinwort C., Klem D. E., Kobayashi T., Kokott T. P., Komamiya S., Köpke L., Kowalewski R., Kreutzmann H., von Krogh J., Kroll J., Kuwano M., Kyberd P., Lafferty G. D., Lamarche F., Larson W. J., Layter J. G., Le Du P., Leblanc P., Lee A. M., Lehto M. H., Lellouch D., Lennert P., Leroy C., Lessard L., Levegrün S., Levinson L., Lloyd S. L., Loebinger F. K., Lorah J. M., Lorazo B., Losty M. J., Lou X. C., Ludwig J., Mannelli M., Marcellini S., Maringer G., Markus C., Martin A. J., Martin J. P., Mashimo T., Mättig P., Maur U., McMahon T. J., McNutt J. R., Meijers F., Menszner D., Merritt F. S., Mes H., Michelini A., Middleton R. P., Mikenberg G., Mildenberger J., Miller D. J., Milstene C., Mir R., Mohr W., Moisan C., Montanari A., Mori T., Moss M. W., Mouthuy T., Murphy P. G., Nellen B., Nguyen H. H., Nozaki M., O'Neale S. W., O'Neill B. P., Oakham F. G., Odorici F., Ogg M., Ogren H. O., Oh H., Oram C. J., Oreglia M. J., Orito S., Pansart J. P., Panzer-Steindel B., Paschievici P., Patrick G. N., Pawley S. J., Pfister P., Pilcher J. E., Pinfold J. L., Plane D. E., Poffenberger P., Poli B., Pouladdej A., Prebys E., Pritchard T. W., Przysiezniak H., Quast G., Redmond M. W., Rees D. L., Riles K., Robins S. A., Robinson D., Rollnik A., Roney J. M., Rossberg S., Rossi A. M., Routenburg P., Runge K., Runolfsson O., Rust D. R., Sanghera S., Sasaki M., Schaile A. D., Schaile O., Schappert W., Scharff-Hansen P., Schenk P., von der Schmitt H., Schreiber S., Schwarz J., Scott W. G., Settles M., Shen B. C., Sherwood P., Shypit R., Simon A., Singh P., Siroli G. P., Skuja A., Smith A. M., Smith T. J., Snow G. A., Sobie R., Springer R. W., Sproston M., Stephens K., Stier H. E., Strom D., Takeda H., Takeshita T., Taras P., Tarem S., Teixeira-Dias P., Thackray N. J., Tsukamoto T., Turner M. F., Tysarczyk-Niemeyer G., Van den plas D., Van Kooten R., VanDalen G. J., Vasseur G., Virtue C. J., Wagner A., Wahl C., Walker J. P., Ward C. P., Ward D. R., Watkins P. M., Watson A. T., Watson N. K., Weber M., Weisz S., Wells P. S., Wermes N., Weymann M., Whalley M. A., Wilson G. W., Wilson J. A., Wingerter I., Winterer V. H., Wood N. C., Wotton S., Wyatt T. R., Yaari R., Yang Y., Yekutieli G., Zacharov I., Zeuner W. & Zorn G. T.
(1991)
Physics Letters B.
264,
1-2,
p. 219-232
The production rate of final state photons in hadronic Z0 decays is measured as a function of ycut = Mij2/Ecm2 the jet resolution parameter and minimum mass of the photon-jet system. Good agreement with the theoretical expectation from an O(ααs) matrix element calculation is observed. Comparing the measurement and the prediction for ycut = 0.06, where the experimental systematic and statistical errors and the theoretical uncertainties are small, and combining this measurement with our result for the hadronic width of the Z0, we derived partial widths of up and down type quarks to be Γu = 333 ± 55 ± 72 MeV and Γd = 358 ± 37 ± 48 MeV in agreement with the standard model expectations. We compare our yield with the QCD shower models including photon radiation. At low γcut JETSET underestimates the photon yield, and ARIADNE describes the production rate well.
Akrawy M. Z., Alexander G., Alliso J., Allport P. P., Anderson K. J., Armitage J. C., Ashton P., Astbury A., Axen D., Azuelos G., Baines J. T., Ball A. H., Banks J., Barker G. J., Barlow R. J., Batley J. R., Beaudoin G., Beck A., Becker J., Behnke T., Bell K. W., Bella G., Bethke S., Biebel O., Binder U., Bloodworth I. J., Bock P., Bougerolle S., Brabson B. B., Breuker H., Brown R. M., Brun R., Buijs A., Burckhart H. J., Capiluppi P., Carnegie R. K., Carter A. A., Carter J. R., Chang C. Y., Charlton D. G., Chrin J. T., Clarke P. E., Cohen I., Collins W. J., Conboy J. E., Cooper M., Couch M., Coupland M., Cuffiani M., Dado S., Dallavalle G. M., De Jong S., Debu P., Deninno M. M., Dieckmann A., Dittmar M., Dixit M. S., Duchovni E., Duerdoth I. P., Dumas D. J., Elcombe P. A., Estabrooks P. G., Etzion E., Fabbri F., Farthouat P., Fincke-Keeler M., Fischer H. M., Fong D. G., Fukunaga C., Gaidot A., Ganel O., Gary J. W., Gascon J., Geddes N. I., Geich-Gimbel C., Gensler S. W., Gentit F. X., Giacomelli G., Gibson V., Gibson W. R., Gillies J. D., Goldberg J., Goodrick M. J., Gorn W., Gross E., Hagedorn H., Hagemann J., Hanson G. G., Hansroul M., Hargrove C. K., Harrus I., Hart J., Hattersley P. M., Hauschild M., Hawkes C. M., Heflin E., Hemingway R. J., Heuer R. D., Hill J. C., Hillier S. J., Hinshaw D. A., Ho C., Hobbs J. D., Hobson P. R., Hochman D., Holl B., Homer R. J., Hou S. R., Howarth C. P., Hughes-Jones R. E., Humbert R., Igo-Kemenes P., Ihssen H., Imrie D. C., Janissen L., Jawahery A., Jeffreys P. W., Jeremie H., Jimack M., Jobes M., Jones R. W., Jovanovic P., Karlen D., Kawagoe K., Kawamoto T., Keeler R. K., Kellogg R. G., Kennedy B. W., Kleinwort C., Klem D. E., Knop G., Kobayashi T., Kokott T. P., Köpke L., Kowalewski R., Kreutzmann H., von Krogh J., Kroll J., Kuwano M., Kyberd P., Lafferty G. D., Lamarche F., Larson W. J., Layter J. G., Le Du P., Leblanc P., Lee A. M., Lehto M. H., Lellouch D., Lennert P., Leroy C., Lessard L., Levegrün S., Levinson L., Lloyd S. L., Loebinger F. K., Lorah J. M., Lorazo B., Losty M. J., Lou X. C., Ludwig J., Mannelli M., Marcellini S., Maringer G., Martin A. J., Martin J. P., Mashimo T., Mättig P., Maur U., McMahon T. J., McNutt J. R., Meijers F., Menszner D., Merritt F. S., Mes H., Michelini A., Middleton R. P., Mikenberg G., Mildenberger J., Miller D. J., Milstene C., Minowa M., Mohr W., Moisan C., Montanari A., Mori T., Moss M. W., Murphy P. G., Murray W. J., Nellen B., Nguyen H. H., Nozaki M., O'Neale S. W., O'Neill B. P., Oakham F. G., Odorici F., Ogg M., Ogren H. O., Oh H., Oram C. J., Oreglia M. J., Orito S., Pansart J. P., Paschievici P., Patrick G. N., Pawley S. J., Pfister P., Pilcher J. E., Pinfold J. L., Plane D. E., Poffenberger P., Poli B., Pouladdej A., Prebys E., Pritchard T. W., Przysiezniak H., Quast G., Redmond M. W., Rees D. L., Regimbald M., Riles K., Roach C. M., Robins S. A., Rollnik A., Roney J. M., Rossberg S., Rossi A. M., Routenburg P., Runge K., Runolfsson O., Rust D. R., Sanghera S., Sasaki M., Schaile A. D., Schaile O., Schappert W., Scharff-Hansen P., Schenk P., von der Schmitt H., Schreiber S., Schwarz J., Settles M., Shen B. C., Sherwood P., Shypit R., Simon A., Singh P., Siroli G. P., Skuja A., Smith A. M., Smith T. J., Snow G. A., Sobie R., Springer R. W., Sproston M., Stephens K., Stier H. E., Stroehmer R., Strom D., Takeda H., Takeshita T., Taras P., Tarem S., Thackray N. J., Tsukamoto T., Turner M. F., Tysarczyk-Niemeyer G., Van den plas D., Van Kooten R., VanDalen G. J., Vasseur G., Virtue C. J., Wagner A., Wahl C., Walker J. P., Ward C. P., Ward D. R., Watkins P. M., Watson A. T., Watson N. K., Weber M., Weisz S., Wells P. S., Wermes N., Weymann M., Wilson G. W., Wilson J. A., Wingerter I., Winterer V. H., Wood N. C., Wotton S., Wyatt T. R., Yaari R., Yang Y., Yekutieli G., Yoshida T., Zacharov I., Zuener W. & Zorn G. T.
(1991)
Physics Letters B.
263,
2,
p. 311-324
Using muon candidates in 133 000 hadronic decays of the Z0, recorded by the OPAL detector at LEP, we have measured the fraction of events containing semi-leptonic decays of b flavoured hadrons. An analysis based on fitting the shape of the momentum and transverse momentum distributions of the muon candidates gave the result: (Γ(Z0→bb) Γ(Z0→hadrons))×Br(b→μ)=0.0226±0.0007±0.0013, and also yielded: (Γ(Z0→cc) Γ(Z0→hadrons))×Br(c→μ)=0.0176±0.0025±0.0042. Using the charge of the muon and the angle of the event thrust axis with respect to the electron beam, in a b-enriched event sample, we measured the forward-backward asymmetry for Z0 → bb decays. Without correction for B0B0 mixing, the asymmetry was found to be AbFB = 0.072±0.042±0.010.
Akrawy M. Z., Alexander G., Allison J., Allport P. P., Anderson K. J., Armitage J. C., Ashton P., Astbury A., Axen D., Azuelos G., Baines J. T., Ball A. H., Banks J., Barker G. J., Barlow R. J., Batley J. R., Beaudoin G., Beck A., Becker J., Behnke T., Bell K. W., Bella G., Bethke S., Biebel O., Binder U., Bloodworth I. J., Bock P., Bougerolle S., Brabson B. B., Breuker H., Brown R. M., Brun R., Buijs A., Buckhart H. J., Capiluppi P., Carnegie R. K., Carter A. A., Carter J. R., Chang C. Y., Charlton D. G., Chrin J. T., Clarke P. E., Cohen I., Collins W. J., Conboy J. E., Cooper M., Couch M., Coupland M., Cuffiani M., Dado S., Dallavalle G. M., De Jong S., Debu P., Deninno M. M., Dieckmann A., Dittmar M., Dixit M. S., Duchovni E., Duerdoth I. P., Dumas D. J., Elcombe P. A., Estabrooks P. G., Etzion E., Fabbri F., Farthouat P., Fincke-Keeler M., Fischer H. M., Fong D. G., Fukunaga C., Gaidot A., Ganel O., Gary J. W., Gascon J., Geddes N. I., Geich-Gimbel C., Gensler S. W., Gentit F. X., Giacomelli G., Gibson V., Gibson W. R., Gillies J. D., Goldberg J., Goodrick M. J., Gorn W., Gross E., Hagedorn H., Hagemann J., Hanson G. G., Hansroul M., Hargrove C. K., Harrus I., Hart J., Hattersley P. M., Hauschild M., Hawkes C. M., Heflin E., Hemingway R. J., Heuer R. D., Hill J. C., Hillier S. J., Hinshaw D. A., Ho C., Hobbs J. D., Hobson P. R., Hochman D., Holl B., Homer R. J., Hou S. R., Howarth C. P., Hughes-Jones R. E., Humbert R., Igo-Kemenes P., Ihssen H., Imrie D. C., Janissen L., Jawahery A., Jeffreys P. W., Jeremie H., Jimack M., Jobes M., Jones R. W., Jovanovic P., Karlen D., Kawagoe K., Kawamoto T., Keeler R. K., Kellogg R. G., Kennedy B. W., Kleinwort C., Klem D. E., Knop G., Kobayashi T., Kokott T. P., Köpke L., Kowalewski R., Kreutzmann H., von Krogh J., Kroll J., Kuwano M., Kyberd P., Lafferty G. D., Lamarche F., Larson W. J., Layter J. G., Le Du P., Leblanc P., Lee A. M., Lehto M. H., Lellouch D., Lennert P., Leroy C., Lessard L., Levegrün S., Levinson L., Lloyd S. L., Loebinger F. K., Lorah J. M., Lorazo B., Losty M. J., Lou X. C., Ludwig J., Mannelli M., Marcellini S., Maringer G., Martin A. J., Martin J. P., Mashimo T., Mättig P., Maur U., McMahon T. J., McNutt J. R., Meijers F., Menszner D., Merritt F. S., Mes H., Michelini A., Middleton R. P., Mikenberg G., Mildenberger J., Miller D. J., Milstene C., Minowa M., Mohr W., Moisan C., Montanari A., Mori T., Moss M. W., Murphy P. G., Murray W. J., Nellen B., Nguyen H. H., Nozaki M., O'Neale S. W., O'Neill B. P., Oakham F. G., Odorici F., Ogg M., Ogren H. O., Oh H., Oram C. J., Oreglia M. J., Orito S., Pansart J. P., Paschievici P., Patrick G. N., Pawley S. J., Pfister P., Pilcher J. E., Pinfold J. L., Plane D. E., Poffenberger P., Poli B., Pouladdej A., Prebys E., Pritchard T. W., Przysiezniak H., Quast G., Redmond M. W., Rees D. L., Regimbald M., Riles K., Roach C. M., Robins S. A., Rollnik A., Roney J. M., Rossberg S., Rossi A. M., Routenburg P., Runge K., Runolfsson O., Rust D. R., Sanghera S., Sasaki M., Schaile A. D., Schaile O., Schappert W., Scharff-Hansen P., Schenk P., von der Schmitt H., Schreiber S., Schwarz J., Settles M., Shen B. C., Sherwood P., Shypit R., Simon A., Singh P., Siroli G. P., Skuja A., Smith A. M., Smith T. J., Snow G. A., Sobie R., Springer R. W., Sproston M., Stephens K., Stier H. E., Stroehmer R., Strom D., Takeda H., Takeshita T., Taras P., Tarem S., Thackray N. J., Tsukamoto T., Turner M. F., Tysarczyk-Niemeyer G., Van den plas D., Van Kooten R., VanDalen G. J., Vasseur G., Virtue C. J., Wagner A., Wahl C., Walker J. P., Ward C. P., Ward D. R., Watkins P. M., Watson A. T., Watson N. K., Weber M., Weisz S., Wells P. S., Wermes N., Weymann M., Wilson G. W., Wilson J. A., Wingerter I., Winterer V. H., Wood N. C., Wotton S., Wyatt T. R., Yaari R., Yang Y., Yekutieli G., Yoshida T., Zacharov I., Zeuner W. & Zorn G. T.
(1991)
Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics.
262,
2-3,
p. 351-361
A factorial moment analysis has been performed on the differential multiplicity distributions of hadronic final states of the Z0 recorded with the OPAL detector at LEP. The moments of the one-dimensional rapidity and the two-dimensional rapidity versus azimuthal angle distributions are found to exhibit "intermittent" behaviour attributable to the jet structure of the events. The moments are reproduced by both parton shower and matrix element QCD based hadronisation models. No evidence for fluctuations beyond those attributable to jet structure is observed.
Alexander G., Allison J., Allport P. P., Anderson K. J., Arcelli S., Armitage J. C., Ashton P., Astbury A., Axen D., Azuelos G., Bahan G. A., Baines J. T., Ball A. H., Banks J., Barker G. J., Barlow R. J., Batley J. R., Beaudoin G., Beck A., Becker J., Behnke T., Bell K. W., Bella G., Bethke S., Biebel O., Binder U., Bloodworth I. J., Bock P., Bosch H. M., Bougerolle S., Brabson B. B., Breuker H., Brown R. M., Brun R., Buijs A., Burckhart H. J., Capiluppi P., Carnegie R. K., Carter A. A., Carter J. R., Chang C. Y., Charlton D. G., Chrin J. T., Clarke P. E., Cohen I., Collins W. J., Conboy J. E., Cooper M., Couch M., Coupland M., Cuffiani M., Dado S., Dallavalle G. M., De Jong S., Debu P., Deninno M. M., Dieckmann A., Dittmar M., Dixit M. S., Duchovni E., Duckeck G., Duerdoth I. P., Dumas D. J., Eckerlin G., Elcombe P. A., Estabrooks P. G., Etzion E., Fabbri F., Fincke-Keeler M., Fischer H. M., Fong D. G., Fukunaga C., Gaidot A., Ganel O., Gary J. W., Gascon J., McGowan R. F., Geddes N. I., Geich-Gimbel C., Gensler S. W., Gentit F. X., Giacomelli G., Gibson V., Gibson W. R., Gillies J. D., Goldberg J., Goodrick M. J., Gorn W., Grandi C., Gross E., Hagemann J., Hanson G. G., Hansroul M., Hargrove C. K., Harrison P. F., Hart J., Hattersley P. M., Hauschild M., Hawkes C. M., Heflin E., Hemingway R. J., Heuer R. D., Hill J. C., Hillier S. J., Hinshaw D. A., Ho C., Hobbs J. D., Hobson P. R., Hochman D., Holl B., Homer R. J., Hou S. R., Howarth C. P., Hughes-Jones R. E., Humbert R., Igo-Kemenes P., Ihssen H., Imrie D. C., Janissen L., Jawahery A., Jeffreys P. W., Jeremie H., Jimack M., Jobes M., Jones R. W., Jovanovic P., Karlen D., Kawagoe K., Kawamoto T., Keeler R. K., Kellogg R. G., Kennedy B. W., Kleinwort C., Klem D. E., Kobayashi T., Kokott T. P., Komamiya S., Köpke L., Kowalewski R., Kreutzmann H., von Krogh J., Kroll J., Kuwano M., Kyberd P., Lafferty G. D., Lamarche F., Larson W. J., Layter J. G., Le Du P., Leblanc P., Lee A. M., Lehto M. H., Lellouch D., Lennert P., Leroy C., Lessard L., Levegrün S., Levinson L., Lloyd S. L., Loebinger F. K., Lorah J. M., Lorazo B., Losty M. J., Lou X. C., Ludwig J., Mannelli M., Marcellini S., Maringer G., Martin A. J., Martin J. P., Mashimo T., Mättig P., Maur U., McMahon T. J., McNutt J. R., Meijers F., Menszner D., Merritt F. S., Mes H., Michelini A., Middleton R. P., Mikenberg G., Mildenberger J., Miller D. J., Milstene C., Mir R., Mohr W., Moisan C., Montanari A., Mori T., Moss M. W., Mouthuy T., Murphy P. G., Nellen B., Nguyen H. H., Nozaki M., O'Neale S. W., O'Neill B. P., Oakham F. G., Odorici F., Ogg M., Ogren H. O., Oh H., Oram C. J., Oreglia M. J., Orito S., Pansart J. P., Panzer-Steindel B., Paschievici P., Patrick G. N., Pawley S. J., Pfister P., Pilcher J. E., Pinfold J. L., Plane D. E., Poffenberger P., Poli B., Pouladdej A., Prebys E., Pritchard T. W., Przysiezniak H., Quast G., Redmond M. W., Rees D. L., Riles K., Robins S. A., Robinson D., Rollnik A., Roney J. M., Rossberg S., Rossi A. M., Routenburg P., Runge K., Runolfsson O., Rust D. R., Sanghera S., Sasaki M., Schaile A. D., Schaile O., Schappert W., Scharff-Hansen P., Schenk P., von der Schmitt H., Schreiber S., Schwarz J., Scott W. G., Settles M., Shen B. C., Sherwood P., Shypit R., Simon A., Singh P., Siroli G. P., Skuja A., Smith A. M., Smith T. J., Snow G. A., Sobie R., Springer R. W., Sproston M., Stephens K., Stier H. E., Strom D., Takeda H., Takeshita T., Taras P., Tarem S., Teixeira-Dias P., Thackray N. J., Tsukamoto T., Turner M. F., Tysarczyk-Niemeyer G., Van den plas D., Van Kooten R., Van Dalen G. J., Vasseur G., Virtue C. J., Wagner A., Wahl C., Walker J. P., Ward C. P., Ward D. R., Watkins P. M., Watson A. T., Watson N. K., Weber M., Weisz S., Wells P. S., Wermes N., Weymann M., Whalley M. A., Wilson G. W., Wilson J. A., Wingerter I., Winterer V. H., Wood N. C., Wotton S., Wyatt T. R., Yaari R., Yangh Y., Yekutieli G., Zacharov I., Zeuner W. & Zorn G. T.
(1991)
Zeitschrift fur Physik C-Particles and Fields.
52,
p. 175-207
We report on an improved measurement of the mass of the Z0 boson, its total width and its partial decay widths into hadrons and leptons, as well as the effective axial vector and vector couplings to charged leptons. These measurements are based on a data set of approximately 160 000 hadronic Z0 decays and 18 000 decays into electrons, muons and taus, recorded by the OPAL experiment at centre of mass energies near the mass of the Z0. The total width and the partial widths to visible final states, derived from the measured cross sections, are used to extract the invisible width. The effective couplings of the Z0 to charged leptons are studied using measurements of the lepton pair cross sections and forward-backward asymmetries at the different centre of mass energy points of the Z0 scan. The implications of our results in the context of the Standard Model are discussed.
Akrawy M. Z., Alexander G., Allison J., Allport P. P., Anderson K. J., Armitage J. C., Ashton P., Astbury A., Axen D., Azuelos G., Baines J. T., Ball A. H., Banks J., Barker G. J., Barlow R. J., Batley J. R., Beaudoin G., Beck A., Becker J., Behnke T., Bell K. W., Bella G., Bethke S., Biebel O., Binder U., Bloodworth I. J., Bock P., Bougerolle S., Brabson B. B., Breuker H., Brown R. M., Brun R., Buijs A., Burckhart H. J., Capiluppi P., Carnegie R. K., Carter A. A., Carter J. R., Chang C. Y., Charlton D. G., Chrin J. T., Clarke P. E., Cohen I., Collins W. J., Conboy J. E., Cooper M., Couch M., Coupland M., Cuffiani M., Dado S., Dallavalle G. M., De Jong S., Debu P., Dennino M. M., Dieckmann A., Dittmar M., Dixit M. S., Duchovni E., Duerdoth I. P., Dumas D. J., Elcombe P. A., Estabrooks P. G., Etzion E., Fabbri F., Farthouat P., Fincke-Keeler M., Fischer H. M., Fong D. G., Fukunaga C., Gaidot A., Ganel O., Gary J. W., Gascon J., Geddes N. I., Geich-Gimbel C., Gensler S. W., Gentit F. X., Giacomelli G., Gibson V., Gibson W. R., Gillies J. D., Goldberg J., Goodrick M. J., Gorn W., Gross E., Hagedorn H., Hagemann J., Hanson G. G., Hansroul M., Hargrove C. K., Harrus I., Hart J., Hattersley P. M., Hauschild M., Hawkes C. M., Heflin E., Hemingway R. J., Heuer R. D., Hill J. C., Hillier S. J., Hinshaw D. A., Ho C., Hobbs J. D., Hobson P. R., Hochman D., Holl B., Homer R. J., Hou S. R., Howarth C. P., Hughes-Jones R. E., Humbert R., Igo-Kemenes P., Ihssen H., Imrie D. C., Janissen L., Jawahery A., Jeffreys P. W., Jeremie H., Jimack M., Jobes M., Jones R. W., Jovanovic P., Karlen D., Kawagoe K., Kawamoto T., Keeler R. K., Kellogg R. G., Kennedy B. W., Kleinwort C., Klem D. E., Knop G., Kobayashi T., Kokott T. P., Köpke L., Kowalewski R., Kreutzmann H., von Krogh J., Kroll J., Kuwano M., Kyberd P., Lafferty G. D., Lamarche F., Larson W. J., Layter J. G., Le Du P., Leblanc P., Lee A. M., Lehto M. H., Lellouch D., Lennert P., Leroy C., Lessard L., Levegrün S., Levinson L., Lloyd S. L., Loebinger F. K., Lorah J. M., Lorazo B., Losty M. J., Lou X. C., Ludwig J., Mannelli M., Marcellini S., Maringer G., Martin A. J., Martin J. P., Mashimo T., Mättig P., Maur U., McMahon T. J., McNutt J. R., Meijers F., Menszner D., Merritt F. S., Mes H., Michelini A., Middleton R. P., Mikenberg G., Mildenberger J., Miller D. J., Milstene C., Minowa M., Mohr W., Moisan C., Montanari A., Mori T., Moss M. W., Murphy P. G., Murray W. J., Nellen B., Nguyen H. H., Nozaki M., O'Neale S. W., O'Neill B. P., Oakham F. G., Odorici F., Ogg M., Ogren H. O., Oh H., Oram C. J., Oreglia M. J., Orito S., Pansart J. P., Paschievici P., Patrick G. N., Pawley S. J., Pfister P., Pilcher J. E., Pinfold J. L., Plane D. E., Poffenberger P., Poli B., Pouladdej A., Prebys E., Pritchard T. W., Przysiezniak H., Quast G., Redmond M. W., Rees D. L., Regimbald M., Riles K., Roach C. M., Robins S. A., Rollnik A., Roney J. M., Rossberg S., Rossi A. M., Routenburg P., Runge K., Runolfsson O., Rust D. R., Sanghera S., Sasaki M., Schaile A. D., Schaile O., Schappert W., Scharff-Hansen P., Schenk P., von der Schmitt H., Schreiber S., Schwarz J., Settles M., Shen B. C., Sherwood P., Shypit R., Simon A., Singh P., Siroli G. P., Skuja A., Smith A. M., Smith T. J., Snow G. A., Sobie R., Springer R. W., Sproston M., Stephens K., Stier H. E., Stroehmer R., Strom D., Takeda H., Takeshita T., Taras P., Tarem S., Thackray N. J., Tsukamoto T., Turner M. F., Tysarczyk-Niemeyer G., Van den plas D., Van Kooten R., VanDalen G. J., Vasseur G., Virtue C. J., Wagner A., Wahl C., Walker J. P., Ward C. P., Ward D. R., Watkins P. M., Watson A. T., Watson N. K., Weber M., Weisz S., Wells P. S., Wermes N., Weymann M., Wilson G. W., Wilson J. A., Wingerter I., Winterer V. H., Wood N. C., Wotton S., Wyatt T. R., Yaari R., Yang Y., Yekutieli G., Yoshida T., Zacharov I., Zeuner W. & Zorn G. T.
(1991)
Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics.
261,
3,
p. 334-346
Quark and gluon in 3-jet events from hadronic Z0 decays are identified through use of the semi-leptonic decays of charm and bottom quarks. This tagging method allows geometrically symmetric or transposed configurations of the quark and gluon jets to be selected, permitting a study of the asymmetry in the population of particles in the regions between jets, commonly called the string effect, which avoids restrictions present in previous studies. In particular, our demonstration of a population asymmetry is performed without use of a model. Our results imply that dynamical differences exist between quarks and gluons or between quark-antiquark and quark-gluon jet systems with respect to their particle production properties.
Akrawy M. Z., Alexander G., Allison J., Allport P. P., Anderson K. J., Armitage J. C., Arnison G. T., Ashton P., Azuelos G., Baines J. T., Ball A. H., Banks J., Barker G. J., Barlow R. J., Batley J. R., Becker J., Behnke T., Bell K. W., Bella G., Bethke S., Biebel O., Binder U., Bloodworth I. J., Bock P., Breuker H., Brown R. M., Brun R., Buijs A., Burckhart H. J., Capiluppi P., Carnegie R. K., Carter A. A., Carter J. R., Chang C. Y., Charlton D. G., Chrin J. T., Clarke P. E., Cohen I., Collins W. J., Conboy J. E., Couch M., Coupland M., Cuffiani M., Dado S., Dallavalle G. M., Debu P., Deninno M. M., Dieckmann A., Dittmar M., Dixit M. S., Duchovni E., Duerdoth I. P., Dumas D. J., Mammouni H. E., Elcombe P. A., Estabrooks P. G., Etzion E., Fabbri F., Farthouat P., Fischer H. M., Fong D. G., French M. T., Fukunaga C., Gaidot A., Ganel O., Gary J. W., Gascon J., Geddes N. I., Gee C. N., Geich-Gimbel C., Gensler S. W., Gentit F. X., Giacomelli G., Gibson V., Gibson W. R., Gillies J. D., Goldberg J., Goodrick M. J., Gorn W., Granite D., Gross E., Grunhaus J., Hagedorn H., Hagemann J., Hansroul M., Hargrove C. K., Harrus I., Hart J., Hattersley P. M., Hauschild M., Hawkes C. M., Heflin E., Hemingway R. J., Heuer R. D., Hill J. C., Hillier S. J., Ho C., Hobbs J. D., Hobson P. R., Hochman D., Holl B., Homer R. J., Hou S. R., Howarth C. P., Hughes-Jones R. E., Humbert R., Igo-Kemenes P., Ihssen H., Imrie D. C., Jawahery A., Jeffreys P. W., Jeremie H., Jimack M., Jobes M., Jones R. W., Jovanovic P., Karlen D., Kawagoe K., Kawamoto T., Kellogg R. G., Kennedy B. W., Kleinwort C., Klem D. E., Knop G., Kobayashi T., Kokott T. P., Köpke L., Kowalewski R., Kreutzmann H., Kroll J., Kuwano M., Kyberd P., Lafferty G. D., Lamarche F., Larson W. J., Layter J. G., Le Du P., Leblanc P., Lee A. M., Lehto M. H., Lellouch D., Lennert P., Lessard L., Levinson L., Lloyd S. L., Loebinger F. K., Lorah J. M., Lorazo B., Losty M. J., Ludwig J., Ma J., Macbeth A. A., Mannelli M., Marcellini S., Maringer G., Martin A. J., Martin J. P., Mashimo T., Mättig P., Maur U., McMahon T. J., McNutt J. R., McPherson A. C., Meijers F., Menszner D., Merritt F. S., Mes H., Michelini A., Middleton R. P., Mikenberg G., Miller D. J., Milstene C., Minowa M., Mohr W., Montanari A., Mori T., Moss M. W., Murphy P. G., Murray W. J., Nellen B., Nguyen H. H., Nozaki M., O'Dowd A. J., O'Neale S. W., O'Neill B. P., Oakham F. G., Odorici F., Ogg M., Oh H., Oreglia M. J., Orito S., Pansart J. P., Patrick G. N., Pawley S. J., Pfister P., Pilcher J. E., Pinfold J. L., Plane D. E., Poli B., Pouladdej A., Pritchard T. W., Quast G., Raab J., Redmond M. W., Rees D. L., Regimbald M., Riles K., Roach C. M., Robins S. A., Rollnik A., Roney J. M., Rossberg S., Rossi A. M., Routenburg P., Runge K., Runolfsson O., Sanghera S., Sansum R. A., Sasaki M., Saunders B. J., Schaile A. D., Schaile O., Schappert W., Scharff-Hansen P., Schreiber S., Schwarz J., Shapira A., Shen B. C., Sherwood P., Simon A., Singh P., Siroli G. P., Skuja A., Smith A. M., Smith T. J., Snow G. A., Springer R. W., Sproston M., Stephens K., Stier H. E., Stroehmer R., Strom D., Takeda H., Takeshita T., Tsukamoto T., Turner M. F., Tysarczyk-Niemeyer G., Van den plas D., Van Dalen G. J., Vasseur G., Virtue C. J., von der Schmitt H., von Krogh J., Wagner A., Wahl C., Ward C. P., Ward D. R., Waterhouse J., Watkins P. M., Watson A. T., Watson N. K., Weber M., Weisz S., Wells P. S., Wermes N., Weymann M., Wilson G. W., Wilson J. A., Wingerter I., Winterer V. H., Wood N. C., Wotton S., Wuensch B., Wyatt T. R., Yaari R., Yang Y., Yekutieli G., Yoshida T., Zeuner W. & Zorn G. T.
(1991)
European Physical Journal C.
49,
p. 49-57
Four-jet final states of hadronic Z0 decays, observed in e+e- annihilation around 91 GeV centre of mass energy, are analysed in terms of observables that are sensitive to the non-abelian gauge structure of QCD. After correction for detector resolution and fragmentation effects, the data are compared to QCD and also to predictions of the Abelian vector gluon gauge theory. The theoretical expectations are calculated in both second order and leading logarithmic approximation of perturbation theory. The data are compatible with QCD but cannot be described by the predictions of the Abelian vector gluon models. From the measured topological distributions, upper limits for the relative production rates of {Mathematical expression} final states are derived.
Akrawy M. Z., Alexander G., Allison J., Allport P. P., Anderson K. J., Armitage J. C., Arnison G. T., Ashton P., Azuelos G., Baines J. T., Ball A. H., Banks J., Barker G. J., Barlow R. J., Batley J. R., Becker J., Behnke T., Bell K. W., Bella G., Bethke S., Biebel O., Binder U., Bloodworth I. J., Bock P., Breuker H., Brown R. M., Brun R., Buijs A., Burckhart H. J., Capiluppi P., Carnegie R. K., Caarter A. A., Carter J. R., Chang C. Y., Charlton D. G., Chrin J. T., Clarke P. E., Cohen I., Collins W. J., Conboy J. E., Couch M., Coupland M., Cuffiani M., Dado S., Dallavalle G. M., Debu P., Deninno M. M., Dieckmann A., Dittmar M., Dixit M. S., Duchovni E., Duerdoth I. P., Dumas D., Mamouni H. E., Elcombe P. A., Estabrooks P. G., Etzion E., Fabbri F., Farthouat P., Fischer H. M., Fong D. G., French M. T., Fukunaga C., Gaidot A., Ganel O., Gary J. W., Gascon J., Geddes N. I., Gee C. N., Geich-Gimbel C., Gensler S. W., Gentit F. Z., Giacomelli G., Gibson V., Gibson W. R., Gillies J. D., Goldberg J., Goodrick M. J., Gorn W., Granite D., Gross E., Grunhaus J., Hagedorn H., Hagemann J., Hansroul M., Hargrove C. K., Harrus I., Hart J., Hattersley P. M., Hauschild M., Hawkes C. M., Heflin E., Hemingway R. J., Heuer R. D., Hill J. C., Hillier S. J., Ho C., Hobbs J. D., Hobson P. R., Hochman D., Holl B., Homer R. J., Hou S. R., Howarth C. P., Hughes-Jones R. E., Humbert R., Igo-Kemenes P., Ihssen H., Imrie D. C., Jawahery A., Jeffreys P. W., Jeremie H., Jimack M., Jobes M., Jones R. W., Jovanovic P., Karlen D., Kawagoe K., Kawamoto T., Kellogg R. G., Kennedy B. W., Kleinwort C., Klem D. E., Knop G., Kobayashi T., Kokott T. P., Köpke L., Rowalewski R., Kreutzmann H., Kroll J., Kuwano M., Kyberd P., Lafferty G. D., Lamarche F., Larson W. J., Layter J. G., Le Du P., Leblanc P., Lee A. M., Lehto M. H., Lellouch D., Lennert P., Lessard L., Levinson L., Lloyd S. L., Loebinger F. K., Lorah J. M., Lorazo B., Losty M. J., Ludwig J., Ma J., Macbeth A. A., Mannelli M., Marcellini S., Maringer G., Martin A. J., Martin J. P., Mashimo T., Mättig P., Maur U., McMahon T. J., McNutt J. R., McPherson A. C., Meijers F., Menszner D., Merritt F. S., Mes H., Michelini A., Middleton R. P., Mikenberg G., Miller D. J., Milstene C., Minowa M., Mohr W., Montanari A., Mori T., Moss M. W., Murphy P. G., Murray W. J., Nellen B., Nguyen H. H., Nozaki M., O'Dowd A. J., O'Neale S. W., O'Neill B. P., Oakham F. G., Odorici F., Ogg M., Oh H., Oreglia M. J., Orito S., Pansart J. P., Patrick G. N., Pawley S. J., Pfister P., Pilcher J. E., Pinfold J. L., Plane D. E., Poli B., Pouladdej A., Pritchard T. W., Quast G., Raab J., Redmond M. W., Rees D. L., Regimbald M., Riles K., Roach C. M., Robins S. A., Rollnik A., Roney J. M., Rossberg S., Rossi A. M., Routenburg P., Runge K., Runolfsson O., Sanghera S., Sansum R. A., Sasaki M., Saunders B. J., Schaile A. D., Schaile O., Schappert W., Scharff-Hansen P., Schreiber S., Schwarz J., Shapira A., Shen B. C., Sherwood P., Simon A., Singh P., Siroli G. P., Skuja A., Smith A. M., Smith T. J., Snow G. A., Springer R. W., Sproston M., Stephens K., Stier H. E., Stroehmer R., Strom D., Takeda H., Takeshita T., Tsukamoto T., Turner M. F., Tysarczyk-Niemeyer G., Van den plas D., VanDalen G. J., Vasseur G., Virtue C. J., von der Schmitt H., von Krogh J., Wagner A., Wahl C., Ward C. P., Ward D. R., Waterhouse J., Watkins P. M., Watson A. T., Watson N. K., Weber M., Weisz S., Wells P. S., Wermes N., Weymann M., Wilson G. W., Wilson J. A., Wingerter I., Winterer V. H., Wood N. C., Wotton S., Wuensch B., Wyatt T. R., Yaari R., Yang Y., Yekutieli G., Yoshida T., Zeuner W. & Zorn G. T.
(1991)
European Physical Journal C.
49,
p. 1-15
A search for minimal standard model (MSM) and minimal supersymmetric model (MSSM), Higgs bosons with masses larger than 3 GeV/c2 has been performed by the OPAL collaboration on e+e- data from LEP corresponding to an integrated luminosity of 1.24 pb-1. The limits for MSM Higgs bosons have been obtained using the channels Z0→Z0*H0, Z0*→(v {Mathematical expression} or e+e- or μ+, μ-. The search for MSSM Higgs bosons has been performed using the channels Z0→Z0*H0, v {Mathematical expression} or e+e- or μ+μ-), h0 →q {Mathematical expression} and Z0→h0A0, h0A0→(4 jet or τ+τ-→ or 4τ), where h0 and A0 are the two lightest neutral MSSM Higgs bosons. No Higgs boson signal has been observed. The MSM Higgs boson is excluded in the mass range 3 GeV < {Mathematical expression}
Akrawy M. Z., Alexander G., Allison J., Allport P. P., Anderson K. J., Armitage J. C., Arnison G. T., Ashton P., Azuelos G., Baines J. T., Ball A. H., Banks J., Barker G. J., Barlow R. J., Batley J. R., Beck A., Becker J., Behnke T., Bell K. W., Bella G., Bethke S., Biebel O., Binder U., Bloodworth I. J., Bock P., Breuker H., Brown R. M., Brun R., Buijs A., Burckhart H. J., Capiluppi P., Carnegie R. K., Carter A. A., Carter J. R., Chang C. Y., Charlton D. G., Chrin J. T., Clarke P. E., Cohen I., Collins W. J., Conboy J. E., Couch M., Coupland M., Cuffiani M., Dado S., Dallavalle G. M., Debu P., Deninno M. M., Dieckmann A., Dittmar M., Dixit M. S., Duchovni E., Duerdoth I. P., Dumas D. J., Elcombe P. A., Estarbrooks P. G., Etzion E., Fabbri F., Farthouat P., Fischer H. M., Fong D. G., French M. T., Fukunaga C., Gaidot A., Ganel O., Gary J. W., Gascon J., Geddes N. I., Gee C. N., Geich-Gimbel C., Gensler S. W., Gentit F. X., Giacomelli G., Gibson V., Gibson W. R., Gillies J. D., Goldberg J., Goodrick M. J., Gorn W., Granite D., Gross E., Grunhaus J., Hagedorn H., Hagemann J., Hansroul M., Hargrove C. K., Harrus I., Hart J., Hattersley P. M., Hauschild M., Hawkes C. M., Heflin E., Hemingway R. J., Heuer R. D., Hill J. C., Hillier S. J., Ho C., Hobbs J. D., Hobson P. R., Hochman D., Holl B., Homer R. J., Hou S. R., Howarth C. P., Hughes-Jones R. E., Humbert R., Igo-Kemenes P., Ihssen H., Imrie D. C., Janissen L., Jawahery A., Jeffreys P. W., Jeremie H., Jimack M., Jobes M., Jones R. W., Jovanovic P., Karlen D., Kawagoe K., Kawamoto T., Kellogg R. G., Kennedy B. W., Kleinwort C., Klem D. E., Knop G., Kobayashi T., Kokott T. P., Köpke L., Kowalewski R., Kreutzmann H., Kroll J., Kuwano M., Kyberd P., Lafferty G. D., Lamarche F., Larson W. J., Layter J. G., Le Du P., Leblanc P., Lee A. M., Lehto M. H., Lellouch D., Lennert P., Lessard L., Levinson L., Lloyd S. L., Loebinger F. K., Lorah J. M., Lorazo B., Losty M. J., Ludwig J., Ma J., Macbeth A. A., Mannelli M., Marcellino S., Maringer G., Martin A. J., Martin J. P., Mashimo T., Mättig P., Maur U., McMahon T. J., McNutt J. R., Meijers F., Menszner D., Merritt F. S., Mes H., Michelini A., Middleton R. P., Mikenberg G., Mildenberger J., Miller D. J., Milstene C., Minowa M., Mohr W., Montanari A., Mori T., Moss M. W., Murphy P. G., Murray W. J., Nellen B., Nguyen H. H., Nozaki M., O'Dowd A. J., O'Neale S. W., O'Neill B. P., Oakham F. G., Odorici F., Ogg M., Oh H., Oreglia M. J., Orito S., Pansart J. P., Patrick G. N., Pawley S. J., Pfister P., Pilcher J. E., Pinfold J. L., Plane D. E., Poli B., Pouladdej A., Prebys E., Pritchard T. W., Quast G., Raab J., Redmond M. W., Rees D. L., Regimbald M., Riles K., Roach C. M., Robins S. A., Rollnik A., Roney J. M., Rossberg S., Rossi A. M., Routenburg P., Runge K., Runolfsson O., Sanghera S., Sansum R. A., Sasaki M., Saunders B. J., Schaile A. D., Schaile O., Schappert W., Scharff-Hansen P., Schreiber S., Schwarz J., Shapira A., Shen B. C., Sherwood P., Simon A., Singh P., Siroli G. P., Skuja A., Smith A. M., Smith T. J., Snow G. A., Springer R. W., Sproston M., Stephens K., Stier H. E., Stroehmer R., Strom D., Takeda H., Takeshita T., Taras P., Thackray N. J., Tsukamoto T., Turner M. F., Tysarczyk-Niemeyer G., Van den plas D., VanDalen G. J., Van Kooten R., Vasseur G., Virtue C. J., von der Schmitt H., von Krogh J., Wagner A., Wahl C., Walker J. P., Ward C. P., Ward D. R., Watkins P. M., Watson A. T., Watson N. K., Weber M., Weisz S., Wells P. S., Wermes N., Weymann M., Wilson G. W., Wilson J. A., Wingerter I., Winterer V. H., Wood N. C., Wotton S., Wuensch B., Wyatt T. R., Yaari R., Yang Y., Yekutieli G., Yoshida T., Zeuner W. & Zorn G. T.
(1991)
Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics.
254,
1-2,
p. 293-302
We have searched for lepton flavour violation in about 14000 Z0 decays into collinear lepton pairs, recorded in an energy scan around the Z0 resonance. Decays of the type Z0→eτ, Z0→μτ and Z0→eμ have been considered. Observed candidates in the eτ and μτ modes are consistent with expected Z0→τ+τ- backgrounds; no candidates are observed for the eμ mode. We obtain limits (at 95% confidence level) on the branching ratios for such Z0 decays of 7.2×10-5 for the eτ decay, 35×10-5 for the μτ decay and 4.6×10-5 for the eμ decay.
Akrawy M. Z., Alexander G., Allison J., Allport P. P., Anderson K. J., Armitage J. C., Arnison G. T., Ashton P., Azuelos G., Baines J. T., Ball A. H., Banks J., Barker G. J., Barlow R. J., Batley J. R., Beck A., Becker J., Behnke T., Bell K. W., Bella G., Bethke S., Biebel O., Binder U., Bloodworth I. J., Bock P., Breuker H., Brown R. M., Brun R., Buijs A., Burckhart H. J., Capiluppi P., Carnegie R. K., Carter A. A., Carter J. R., Chang C. Y., Charlton D. G., Chrin J. T., Clarke P. E., Cohen I., Collins W. J., Conboy J. E., Couch M., Coupland M., Cuffiani M., Dado S., Dallavalle G. M., Debu P., Deninno M. M., Dieckman A., Dittmar M., Dixit M. S., Duchovni E., Duerdoth I. P., Dumas D. J., Elcombe P. A., Estabrooks P. G., Etzion E., Fabbri F., Farthouat P., Fischer H. M., Fong D. G., French M. T., Fukunaga C., Gaidot A., Ganel O., Gary J. W., Gascon J., Geddes N. I., Gee C. N., Geich-Gimbel C., Gensler S. W., Gentit F. X., Giacomelli G., Gibson V., Gibson W. R., Gillies J. D., Goldberg J., Goodrick M. J., Gorn W., Granite D., Gross E., Grunhaus J., Hagedorn H., Hagemann J., Hansroul M., Hargrove C. K., Harrus I., Hart J., Hattersley P. M., Hauschild M., Hawkes C. M., Heflin E., Hemingway R. J., Heuer R. D., Hill J. C., Hillier S. J., Ho C., Hobbs J. D., Hobson P. R., Hochman D., Holl B., Homer R. J., Hou S. R., Howarth C. P., Hughes-Jones R. E., Humbert R., Igo-Kemenes P., Ihssen H., Imrie D. C., Janissen L., Jawahery A., Jeffreys P. W., Jeremie H., Jimack M., Jobes M., Jones R. W., Jovanovic P., Karlen D., Kawagoe K., Kawamoto T., Kellogg R. G., Kennedy B. W., Kleinwort C., Klem D. E., Knop G., Kobayashi T., Kokott T. P., Köpke L., Kowalewski R., Kreutzmann H., Kroll J., Kuwano M., Kyberd P., Lafferty G. D., Lamarche F., Larson W. J., Layter J. G., Le Du P., Leblanc P., Lee A. M., Lehto M. H., Lellouch D., Lennert P., Lessard L., Levinson L., Lloyd S. L., Loebinger F. K., Lorah J. M., Lorazo B., Losty M. J., Ludwig J., Ma J., Macbeth A. A., Mannelli M., Marcellini S., Maringer G., Martin A. J., Martin J. P., Mashimo T., Mättig P., Maur U., McMahon T. J., McNutt J. R., Meijers F., Menszner D., Merritt F. S., Mes H., Michelini A., Middleton R. P., Mikenberg G., Mildenberger J., Miller D. J., Milstene C., Minowa M., Mohr W., Montanari A., Mori T., Moss M. W., Murphy P. G., Murray W. J., Nellen B., Nguyen H. H., Nozaki M., O'Dowd A. J., O'Neale S. W., O'Neill B. P., Oakham F. G., Odorici F., Ogg M., Oh H., Oreglia M. J., Orito S., Pansart J. P., Patrick G. N., Pawley S. J., Pfister P., Pilcher J. E., Pinfold J. L., Plane D. E., Poli B., Pouladdej A., Prebys E., Pritchard T. W., Quast G., Raab J., Redmond M. W., Rees D. L., Regimbald M., Riles K., Roach C. M., Robins S. A., Rollnik A., Roney J. M., Rossberg S., Rossi A. M., Routenburg P., Runge K., Runolfsson O., Sanghera S., Sansum R. A., Sasaki M., Saunders B. J., Schaile A. D., Schaile O., Schappert W., Scharff-Hansen P., Schreiber S., Schwarz J., Shapira A., Shen B. C., Sherwood P., Simon A., Singh P., Siroli G. P., Skuja A., Smith A. M., Smith T. J., Snow G. A., Springer R. W., Sproston M., Stephens K., Stier H. E., Stroehmer R., Strom D., Takeda H., Takeshita T., Taras P., Thackray N. J., Tsukamoto T., Turner M. F., Tysarczyk-Niemeyer G., Van den plas D., VanDalen G. J., Van Kooten R., Vasseur G., Virtue C. J., von der Schmitt H., von Krogh J., Wagner A., Wahl C., Walker J. P., Ward C. P., Ward D. R., Watkins P. M., Watson A. T., Watson N. K., Weber M., Weisz S., Wells P. S., Wermes N., Weymann M., Wilson G. W., Wilson J. A., Wingerter I., Winterer V. H., Wood N. C., Wotton S., Wuensch B., Wyatt T. R., Yaari R., Yang Y., Yekutieli G., Yoshida T., Zeuner W. & Zorn G. T.
(1991)
Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics.
253,
3-4,
p. 511-523
A search for the minimal standard model Higgs boson (H0) has been performed with data from e+e- collisions in the OPAL detector at LEP. The analysis is based on approximately 8 pb-1 of data taken at centre-of-mass energies between 88.2 and 95.0 GeV. The search concentrated on the reaction e+e-→(e+e-, μ+μ-, vv or τ+τ-)H0, H0→(qq or τ+τ-) for Higgs boson masses above 25 GeV/c2. No Higgs boson candidates have been observed. The present study, combined with previous OPAL publications, excludes the existence of a standard model Higgs boson with mass in the range 3
Akrawy M. Z., Alexander G., Allison J., Allport P. P., Anderson K. J., Armitage J. C., Arnison G. T., Ashton P., Azuelos G., Baines J. T., Ball A. H., Banks J., Barker G. J., Barlow R. J., Batley J. R., Beck A., Becker J., Behnke T., Bell K. W., Bella G., Bethke S., Biebel O., Binder U., Bloodworth I. J., Bock P., Breuker H., Brown R. M., Brun R., Buijs A., Burckhart H. J., Capiluppi P., Carnegie R. K., Carter A. A., Carter J. R., Chang C. Y., Charlton D. G., Chrin J. T., Clarke P. E., Cohen I., Collins W. J., Conboy J. E., Couch M., Coupland M., Cuffiani M., Dado S., Dallavalle G. M., Debu P., Deninno M. M., Dieckmann A., Dittmar M., Dixit M. S., Duchovni E., Duerdoth I. P., Dumas D. J., El Mamouni H., Elcombe P. A., Estabrooks P. G., Etzion E., Fabbri F., Farthouat P., Fischer H. M., Fong D. G., French M. T., Fukunaga C., Gaidot A., Ganel O., Gary J. W., Gascon J., Geddes N. I., Gee C. N., Geich-Gimbel C., Gensler S. W., Gentit F. X., Giacomelli G., Gibson V., Gibson W. R., Gillies J. D., Goldberg J., Goodrick M. J., Gorn W., Granite D., Gross E., Grunhaus J., Hagedorn H., Hagemann J., Hansroul M., Hargrove C. K., Harrus I., Hart J., Hattersley P. M., Hauschild M., Hawkes C. M., Heflin E., Hemingway R. J., Heuer R. D., Hill J. C., Hillier S. J., Ho C., Hobbs J. D., Hobson P. R., Hochman D., Holl B., Homer R. J., Hou S. R., Howarth C. P., Hughes-Jones R. E., Humbert R., Igo-Kemenes P., Ihssen H., Imrie D. C., Janissen L., Jawahery A., Jeffreys P. W., Jeremie H., Jimack M., Jobes M., Jones R. W., Jovanovic P., Karlen D., Kawagoe K., Kawamoto T., Kellogg R. G., Kennedy B. W., Kleinwort C., Klem D. E., Knop G., Kobayashi T., Kokott T. P., Köpke L., Kowalewski R., Kreutzmann H., Kroll J., Kuwano M., Kyberd P., Lafferty G. D., Lamarche F., Larson W. J., Layter J. G., Le Du P., Leblanc P., Lee A. M., Lehto M. H., Lellouch D., Lennert P., Lessard L., Levinson L., Lloyd S. L., Loebinger F. K., Lorah J. M., Lorazo B., Losty M. J., Ludwig J., Ma J., Macbeth A. A., Mannelli M., Marcellini S., Maringer G., Martin A. J., Martin J. P., Mashino T., Mättig P., Maur U., McMahon T. J., McNutt J. R., Meijers F., Menszner D., Merritt F. S., Mes H., Michelini A., Middleton R. P., Mikenberg G., Mildenberger J., Miller D. J., Milstene C., Minowa M., Mohr W., Montanari A., Mori T., Moss M. W., Murphy P. G., Murray W. J., Nellen B., Nguyen H. H., Nozaki M., O'Dowd A. J., O'Neale S. W., O'Neil B. P., Oakham F. G., Odorici F., Ogg M., Oh H., Oreglia M. J., Orito S., Pansart J. P., Patrick G. N., Pawley S. J., Pfister P., Pilcher J. E., Pinfold J. L., Plane D. E., Poli B., Pouladdej A., Prebys E., Pritchard T. W., Quast G., Raab J., Redmond M. W., Rees D. L., Regimbald M., Riles K., Roach C. M., Robins S. A., Rollnik A., Roney J. M., Rossberg S., Rossi A. M., Routenburg P., Runge K., Runolfsson O., Sanghera S., Sansum R. A., Sasaki M., Saunders B. J., Schaile A. D., Schaile O., Schappert W., Scharff-Hansen P., Schreiber S., Schwarz J., Shapira A., Shen B. C., Sherwood P., Simon A., Singh P., Siroli G. P., Skuja A., Smith A. M., Smith T. J., Snow G. A., Springer R. W., Sproston M., Stephens K., Stier H. E., Stroehmer R., Strom D., Takeda H., Takeshita T., Thackray N. J., Tsukamoto T., Turner M. F., Tysarczyk-Niemeyer G., van den plas D., VanDalen G. J., Vasseur G., Virtue C. J., von der Schmitt H., von Krogh J., Wagner A., Wahl C., Walker J. P., Ward C. P., Ward D. R., Watkins P. M., Watson A. T., Watson N. K., Weber M., Weisz S., Wells P. S., Wermes N., Weymann M., Wilson G. W., Wilson J. A., Wingerter I., Winterer V. H., Wood N. C., Wotton S., Wuensch B., Wyatt T. R., Yaari R., Yang Y., Yekutieli G., Yoshida T., Zeuner W. & Zorn G. T.
(1990)
Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics.
252,
1,
p. 159-169
From an analysis of multi-hadron events from Z0 decays, values of the strong coupling constant αs(M2Z0)=0.131±0.006 (exp)±0.002(theor.) and αs(Mz02) = -0.009+0.007(exp.)-0.002+0.006 (theor.) are derived from the energy-energy correlation distribution and its asymmetry, respectively, assuming the QCD renormalization scale μ=MZ0. The theoretical error accounts for differences between O(α2s) calculations. A two parameter fit ΛMS and the renormalization scale μ leads to Λ MS=216±85 MeV and μ2 s=0.027±0.013 or to αs(M2Z0)=0.117+0. 006-0.008(exp.) for the energy-energy correlation distribution. The energy-energy correlation asymmetry distribution is insensitive to a scale change: thus the αs value quoted above for this variable includes the theoretical uncertainty associated with the renormalization scale.
Akrawy M. Z., Alexander G., Allison J., Allport P. P., Anderson K. J., Armitage J. C., Arnison G. T., Ashton P., Azuelos G., Baines J. T., Ball A. H., Banks J., Barker G. J., Barlow R. J., Batley J. R., Beck A., Becker J., Behnke T., Bell K. W., Bella G., Bethke S., Biebel O., Binder U., Bloodworth I. J., Bock P., Breuker H., Brown R. M., Brun R., Buijs A., Burckhart H. J., Capiluppi P., Carnegie R. K., Carter A. A., Carter J. R., Chang C. Y., Charlton D. G., Chrin J. T., Clarke P. E., Cohen I., Collins W. J., Conboy J. E., Couch M., Coupland M., Cuffiani M., Dado S., Dallavalle G. M., Debu P., Deninno M. M., Dieckmann A., Dittmar M., Dixit M. S., Duchovni E., Duerdoth I. P., Dumas D. J., El Mamouni H., Elcombe P. A., Estabrooks P. G., Etzion E., Fabbri F., Farthouat P., Fischer H. M., Fong D. G., French M. T., Fukunaga C., Gaidot A., Ganel O., Gary J. W., Gascon J., Geddes N. I., Gee C. N., Geich-Gimbel C., Gensler S. W., Gentit F. X., Giacomelli G., Gibson V., Gibson W. R., Gillies J. D., Goldberg J., Goodrick M. J., Gorn W., Granite D., Gross E., Grunhaus J., Hagedorn H., Hagemann J., Hansroul M., Hargrove C. K., Harrus I., Hart J., Hattersley P. M., Hauschild M., Hawkes C. M., Heflin E., Hemingway R. J., Heuer R. D., Hill J. C., Hillier S. J., Ho C., Hobbs J. D., Hobson P. R., Hochman D., Holl B., Homer R. J., Hou S. R., Howarth C. P., Hughes-Jones R. E., Humbert R., Igo-Kemenes P., Ihssen H., Imrie D. C., Janissen L., Jawahery A., Jeffreys P. W., Jeremie H., Jimack M., Jobes M., Jones R. W., Jovanovic P., Karlen D., Kawagoe K., Kawamoto T., Kellogg R. G., Kennedy B. W., Kleinwort C., Klem D. E., Knop G., Kobayashi T., Kokott T. P., Köpke L., Kowalewski R., Kreutzmann H., Kroll J., Kuwano M., Kyberd P., Lafferty G. D., Lamarche F., Larson W. J., Layter J. G., Le Du P., Leblanc P., Lee A. M., Lehto M. H., Lellouch D., Lennert P., Lessard L., Levinson L., Lloyd S. L., Loebinger F. K., Lorah J. M., Lorazo B., Losty M. J., Ludwig J., Ma J., Macbeth A. A., Mannelli M., Marcellini S., Maringer G., Martin A. J., Martin J. P., Mashimo T., Mättig P., Maur U., McMahon T. J., McNutt J. R., Meijers F., Menszner D., Merritt F. S., Mes H., Michelini A., Middleton R. P., Mikenberg G., Mildenberger J., Miller D. J., Milstene C., Minowa M., Mohr W., Montanari A., Mori T., Moss M. W., Murphy P. G., Murray W. J., Nellen B., Nguyen H. H., Nozaki M., O'Dowd A. J., O'Neale S. W., O'Neill B. P., Oakham F. G., Odorici F., Ogg M., Oh H., Oreglia M. J., Orito S., Pansart J. P., Patrick G. N., Pawley S. J., Pfister P., Pilcher J. E., Pinfold J. L., Plane D. E., Poli B., Pouladdej A., Prebys E., Pritchard T. W., Quast G., Raab J., Redmond M. W., Rees D. L., Regimbald M., Riles K., Roach C. M., Robins S. A., Rollnik A., Roney J. M., Rossberg S., Rossi A. M., Routenburg P., Runge K., Runolfsson O., Sanghera S., Sansum R. A., Sasaki M., Saunders B. J., Schaile A. D., Schaile O., Schappert W., Scharff-Hansen P., Schreiber S., Schwarz J., Shapira A., Shen B. C., Sherwood P., Simon A., Singh P., Siroli G. P., Skuja A., Smith A. M., Smith T. J., Snow G. A., Springer R. W., Sproston M., Stephens K., Stier H. E., Stroehmer R., Strom D., Takeda H., Takeshita T., Thackray N. J., Tsukamoto T., Turner M. F., Tysarczyk-Niemeyer G., Van den plas D., VanDalen G. J., Vasseur G., Virtue C. J., von der Schmitt H., von Krogh J., Wagner A., Wahl C., Walker J. P., Ward C. P., Ward D. R., Watkins P. M., Watson A. T., Watson N. K., Weber M., Weisz S., Wells P. S., Wermes N., Weymann M., Wilson G. W., Wilson J. A., Wingerter I., Winterer V. H., Wood N. C., Wotton S., Wuensch B., Wyatt T. R., Yaari R., Yang Y., Yekutieli G., Yoshida T., Zeuner W. & Zorn G. T.
(1990)
Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics.
252,
2,
p. 290-300
A direct search for the exclusive pair production of stable singly charged heavy (SCH) particles in Z0 decays at the LEP e+e- collider is presented. In a scan around the Z0 resonance of 0.4 pb- integrated luminosity, no evidence is seen for the production of slow-moving charged particles as measured by their time-of-flight. We set an upper limit of 1 × 10-3 on the Z0 branching ratio into a pair of SCH fermions in the mass range 29-40 GeV/c2, corresponding to a 3 MeV upper limit on such a contribution to the total width of the Z0. We exclude a fourth generation SCH lepton in the mass range 18.5-42.8 GeV/c2. We also exclude a stable supersymmetric partner of the right-handed lepton, l ̃R, in the mass range 21.5-38.8 GeV/c2. All limits are at 95% confidence level.
Akrawy M. Z., Alexander G., Allison J., Allport P. P., Anderson K. J., Armitage J. C., Arnison G. T., Ashton P., Azuelos G., Baines J. T., Ball A. H., Banks J., Barker G. J., Barlow R. J., Batley J. R., Becker J., Behnke T., Bell K. W., Bella G., Bethke S., Biebel O., Binder U., Bloodworth L. J., Bock P., Breuker H., Brown R. M., Brun R., Buijs A., Burckhart H. J., Capiluppi P., Carnegie R. K., Carter A. A., Carter J. R., Chang C. Y., Charlton D. G., Chrin J. T., Cohen I., Collins W. J., Conboy J. E., Couch M., Coupland M., Cuffiani M., Dado S., Dallavalle G. M., Debu P., Deninno M. M., Dieckmann A., Dittmar M., Dixit M. S., Duchovni E., Duerdoth I. P., Dumas D., El Mamouni H., Elcombe P. A., Estabrooks P. G., Etzion E., Fabbri F., Farthouat P., Fischer H. M., Fong D. G., French M. T., Fukunaga C., Gaidot A., Ganel O., Gary J. W., Gascon J., Geddes N. I., Gee C. N., Geich-Gimbel C., Gensler S. W., Gentit F. X., Giacomelli G., Gibson V., Gibson W. R., Gillies J. D., Goldberg J., Goodrick M. J., Gorn W., Granite D., Gross E., Grosse-Wiesmann P., Grunhaus J., Hagedorn H., Hagemann J., Hansroul M., Hargrove C. K., Hart J., Hattersley P. M., Hauschild M., Hawkes C. M., Heflin E., Hemingway R. J., Heuer R. D., Hill J. C., Hillier S. J., Ho C., Hobbs J. D., Hobson P. R., Hochman D., Holl B., Homer R. J., Hou S. R., Howarth C. P., Hughes-Jones R. E., Igo-Kemenes P., Ihssen H., Imrie D. C., Jawahery A., Jeffreys P. W., Jeremie H., Jimack M., Jobes M., Jones R. W., Jovanovic P., Karlen D., Kawagoe K., Kawamoto T., Kellogg R. G., Kennedy B. W., Kleinwort C., Klem D. E., Knop G., Kobayashi T., Kokott T. P., Köpke L., Kowalewski R., Kreutzmann H., von Krogh J., Kroll J., Kuwano M., Kyberd P., Lafferty G. D., Lamarche F., Larson W. J., Lasota M. M., Layter J. G., Le Du P., Leblanc P., Lee A. M., Lellouch D., Lennert P., Lessard L., Levinson L., Lloyd S. L., Loebinger F. K., Lorah J. M., Lorazo B., Losty M. J., Ludwig J., Lupu N., Ma J., Macbeth A. A., Mannelli M., Marcellini S., Maringer G., Martin A. J., Martin J. P., Mashimo T., Mättig P., Maur U., McMahon T. J., McPherson A. C., Meijers F., Menszner D., Merritt F. S., Mes H., Michelini A., Middleton R. P., Mikenberg G., Miller D. J., Milstene C., Minowa M., Mohr W., Montanari A., Mori T., Moss M. W., Murphy P. G., Murray W. J., Nellen B., Nguyen H. H., Nozaki M., O'Dowd A. J., O'Neale S. W., O'Neill B. P., Oakham F. G., Odorici F., Ogg M., Oh H., Oreglia M. J., Orito S., Pansart J. P., Patrick G. N., Pawley S. J., Pfister P., Pilcher J. E., Pinfold J. L., Plane D. E., Poli B., Pouladdej A., Pritchard P. W., Quast G., Raab J., Redmond M. W., Rees D. L., Regimbald M., Riles K., Roach C. M., Robins S. A., Rollnik A., Roney J. M., Rossberg S., Rossi A. M., Routenburg P., Runge K., Runolfsson O., Sanghera S., Sansum R. A., Sasaki M., Saunders B. J., Schaile A. D., Schaile O., Schappert W., Scharff-Hansen P., von der Schmitt H., Schreiber S., Schwarz J., Shapira A., Shen B. C., Sherwood P., Simon A., Siroli G. P., Skuja A., Smith A. M., Smith T. J., Snow G. A., Spreadbury E. J., Springer R. W., Sproston M., Stephens K., Stier H. E., Ströhmer R., Strom D., Takeda H., Takeshita T., Tsukamoto T., Turner M. F., Tysarczyk-Niemeyer G., Van den plas D., VanDalen G. J., Vasseur G., Virtue C. J., Wagner A., Wahl C., Ward C. P., Ward D. R., Waterhouse J., Watkins P. M., Watson A. T., Watson N. K., Weber M., Weisz S., Wermes N., Weymann M., Wilson G. W., Wilson J. A., Wingerter I., Winterer V. H., Wood N. C., Wotton S., Wuensch B., Wyatt T. R., Yaari R., Yang Y., Yekutieli G., Yoshida T., Zeuner W. & Zorn G. T.
(1990)
European Physical Journal C.
47,
p. 505-521
We present measurements of global event shape distributions in the hadronic decays of the Z0. The data sample, corresponding to an integrated luminosity of about 1.3 pb-1, was collected with the OPAL detector at LEP. Most of the experimental distributions we present are unfolded for the finite acceptance and resolution of the OPAL detector. Through comparison with our unfolded data, we tune the parameter values of several Monte Carlo computer programs which simulate perturbative QCD and the hadronization of partons. Jetset version 7.2, Herwig version 3.4 and Ariadne version 3.1 all provide good descriptions of the experimental distributions. They in addition describe lower energy data with the parameter values adjusted at the Z0 energy. A complete second order matrix element Monte Carlo program with a modified perturbation scale is also compared to our 91 GeV data and its parameter values are adjusted. We obtained an unfolded value for the mean charged multiplicity of 21.28±0.04±0.84, where the first error is statistical and the second is systematic.
Akrawy M. Z., Alexander G., Allison J., Allport P. P., Anderson K. J., Armitage J. C., Arnison G. T., Ashton P., Azuelos G., Baines J. T., Ball A. H., Banks J., Barker G. J., Barlow R. J., Batley J. R., Beck A., Becker J., Behnke T., Bell K. W., Bella G., Bethke S., Biebel O., Binder U., Bloodworth I. J., Bock P., Breuker H., Brown R. M., Brun R., Buijs A., Burckhart H. J., Capiluppi P., Carnegie R. K., Carter A. A., Carter J. R., Chang C. Y., Charlton D. G., Chrin J. T., Clarke P. E., Cohen I., Collins W. J., Conboy J. E., Couch M., Coupland M., Cuffiani M., Dado S., Dallavalle G. M., Debu P., Deninno M. M., Dieckmann A., Dittmar M., Dixit M. S., Duchovni E., Duerdoth I. P., Dumas D., Mamouni H. E., Elcombe P. A., Estabrooks P. G., Etzion E., Fabbri F., Farthouat P., Fischer H. M., Fong D. G., French M. T., Fukunaga C., Gaidot A., Ganel O., Gary J. W., Gascon J., Geddes N. I., Gee C. N., Geich-Gimbel C., Gensler S. W., Gentit F. X., Giacomelli G., Gibson V., Gibson W. R., Gillies J. D., Goldberg J., Goodrick M. J., Gorn W., Granite D., Gross E., Grunhaus J., Hagedorn H., Hagemann J., Hansroul M., Hargrove C. K., Harris I., Hart J., Hattersley P. M., Hauschild M., Hawkes C. M., Heflin E., Hemingway R. J., Heuer R. D., Hill J. C., Hillier S. J., Ho C., Hobbs J. D., Hobson P. R., Hochman D., Holl B., Homer R. J., Hou S. R., Howarth C. P., Hughes-Jones R. E., Humbert R., Igo-Kemenes P., Ihssen H., Imrie D. C., Janissen J., Jawahery A., Jeffreys P. W., Jeremie H., Jimack M., Jobes M., Jones R. W., Jovanovic P., Karlen D., Kawagoe K., Kawamoto T., Kellogg R. G., Kennedy B. W., Kleinwort C., Klem D. E., Knop G., Kobayashi T., Kokott T. P., Köpke L., Kowalewski R., Kreutzmann H., Kroll J., Kuwano M., Kyberd P., Lafferty G. D., Lamarche F., Larson W. J., Layter J. G., Du P. L., Leblanc P., Lee A. M., Lehto M. H., Lellouch D., Lennert P., Lessard L., Levinson L., Llyod S. L., Loebinger F. K., Lorah J. M., Lorazo B., Losty M. J., Ludwig J., Ma J., Macbeth A. A., Mannelli M., Marcellini S., Maringer G., Martin A. J., Martin J. P., Mashimo T., Mättig P., Maur U., McMahon T. J., McNutt J. R., Meijers F., Menszner D., Merritt F. S., Mes H., Michelini A., Middleton R. P., Mikenberg G., Mildenberger J., Miller D. J., Milstene C., Minowa M., Mohr W., Montanari A., Mori T., Moss M. W., Murphy P. G., Murray W. J., Nellen B., Nguyen H. H., Nozaki M., O'Dowd A. J., O'Neale S. W., O'Neill B. P., Oakham F. G., Odorici F., Ogg M., Oh H., Oreglia M. J., Orito S., Pansart J. P., Patrick G. N., Pawley S. J., Pfister P., Pilcher J. E., Pinfold J. L., Plane D. E., Poli B., Pouladdej A., Prebys E., Pritchard T. W., Quast G., Raab J., Redmond M. W., Rees D. L., Regimbald M., Riles K., Roach C. M., Robins S. A., Rollnik A., Roney J. M., Rossberg S., Rossi A. M., Routenburg P., Runge K., Runolfsson O., Sanghera S., Sansum R. A., Sasaki M., Saunders B. J., Schaile A. D., Schaile O., Schappert W., Scharff-Hansen P., Schreiber S., Schwarz J., Shapira A., Shen B. C., Sherwood P., Simon A., Siroli G. P., Skuja A., Smith A. M., Smith T. J., Snow G. A., Springer R. W., Sproston M., Stephens K., Stier H. E., Ströhmer R., Strom D., Takeda H., Takeshita T., Thackray N. J., Tsukamoto T., Turner M. F., Tysarczyk-Niemeyer G., Van den plas D., VanDalen G. J., Vasseur G., Virtue C. J., von der Schmitt H., von Krogh J., Wagner A., Wahl C., Walker J. P., Ward C. P., Ward D. R., Watkins P. M., Watson A. T., Watson N. K., Weber M., Weisz S., Wells P. S., Wermes N., Weymann M., Wilson G. W., Wilson J. A., Wingerter I., Winterer V. H., Wood N. C., Wotton S., Wuensch B., Wyatt T. R., Yaari R., Yang Y., Yekutieli G., Yoshida T., Zeuner W. & Zorn G. T.
(1990)
Physics Letters B.
251,
1,
p. 211-222
Data from e+e- collisions collected with the OPAL detector at LEP have been used to exclude a standard model Higgs boson (H0) with mass below 2mμ. The analysis used 1.2 pb-1 of data taken at centre-of-mass energies between 88.3 and 95.0 GeV to search for the reactions e+e-→Z0H0, (Z0→e+e- or μ+μ-, H0→undetected), e+e-→Z0H0, (Z0→νν, H0→e+e- or γγ). The existence of a minimal standard model H0 with mass in the range 0≤mH≤2mμ is excluded at the 95% confidence level. The limit is also valid for standard model extensions with a large branching ratio for the decay of H0 to γγ.
Akrawy M. Z., Alexander G., Allison J., Allport P. P., Anderson K. J., Armitage J. C., Arnison G. T., Ashton P., Azuelos G., Baines J. T., Ball A. H., Banks J., Barker G. J., Barlow R. J., Batley J. R., Becker J., Behnke T., Bell K. W., Bella G., Bethke S., Biebel O., Binder U., Bloodworth I. J., Bock P., Breuker H., Brown R. M., Brun R., Buijs A., Burckhart H. J., Capiluppi P., Carnegie R. K., Carter A. A., Carter J. R., Chang C. Y., Charlton D. G., Chrin J. T., Clarke P. E., Cohen I., Collins W. J., Conboy J. E., Couch M., Coupland M., Cuffiani M., Dado S., Dallavalle G. M., Debu P., Deninno M. M., Dieckmann A., Dittmar M., Dixit M. S., Duchovni E., Duerdoth I. P., Dumas D. J., El Mamouni H., Elcombe P. A., Estabrooks P. G., Etzion E., Fabbri F., Farthouat P., Fischer H. M., Fong D. G., French M. T., Fukunaga C., Gaidot A., Ganel O., Gary J. W., Gascon J., Geddes N. I., Gee C. N., Geich-Gimbel C., Gensler S. W., Gentit F. X., Giacomelli G., Gibson V., Gibson W. R., Gillies J. D., Goldberg J., Goodrick M. J., Gorn W., Granite D., Gross E., Grunhaus J., Hagedorn H., Hagemann J., Hansroul M., Hargrove C. K., Harrus I., Hart J., Hattersley P. M., Hauschild M., Hawkes C. M., Heflin E., Hemingway R. J., Heuer R. D., Hill J. C., Hillier S. J., Ho C., Hobbs J. D., Hobson P. R., Hochman D., Holl B., Homer R. J., Hou S. R., Howarth C. P., Humbert R., Hughes-Jones R. E., Igo-Kemenes P., Ihssen H., Imrie D. C., Jawahery A., Jeffreys P. W., Jeremie H., Jimack M., Jobes M., Jones R. W., Jovanovic P., Karlen D., Kawagoe K., Kawamoto T., Kellogg R. G., Kennedy B. W., Kleinwort C., Klem D. E., Knop G., Kobayashi T., Kokott T. P., Köpke L., Kowalewski R., Kreutzmann H., Kroll J., Kuwano M., Kyberd P., Lafferty G. D., Lamarche F., Larson W. J., Layter J. G., Le Du P., Leblanc P., Lee A. M., Lehto M. H., Lellouch D., Lennert P., Lessard L., Levinson L., Lloyd S. L., Loebinger F. K., Lorah J. M., Lorazo B., Losty M. J., Ludwig J., Ma J., Macbeth A. A., Mannelli M., Marcellini S., Maringer G., Martin A. J., Martin J. P., Mashimo T., Mättig P., Maur U., McMahon T. J., McNutt J. R., McPherson A. C., Meijers F., Menszner D., Merritt F. S., Mes H., Michelini A., Middleton R. P., Mikenberg G., Miller D. J., Milstene C., Minowa M., Mohr W., Montanari A., Mori T., Moss M. W., Murphy P. G., Murray W. J., Nellen B., Nguyen H. H., Nozaki M., O'Dowd A. J., O'Neale S. W., O'Neill B. P., Oakham F. G., Odorici F., Ogg M., Oh H., Oreglia M. J., Orito S., Pansart J. P., Patrick G. N., Pawley S. J., Pfister P., Pilcher J. E., Pinfold J. L., Plane D. E., Poli B., Pouladdej A., Pritchard T. W., Quast G., Raab J., Redmond M. W., Rees D. L., Regimbald M., Riles K., Roach C. M., Robins S. A., Rollnik A., Roney J. M., Rossberg S., Rossi A. M., Routenburg P., Runge K., Runolfsson O., Sanghera S., Sansum R. A., Sasaki M., Saunders B. J., Schaile A. D., Schaile O., Schappert W., Scharff-Hansen P., Schreiber S., Schwarz J., Shapira A., Shen B. C., Sherwood P., Simon A., Singh P., Siroli G. P., Skuja A., Smith A. M., Smith T. J., Snow G. A., Springer R. W., Sproston M., Stephens K., Stier H. E., Ströhmer R., Strom D., Takeda H., Takeshita T., Tsukamoto T., Turner M. F., Tysarczyk-Niemeyer G., Van den plas D., Van Dalen G. J., Vasseur G., Virtue C. J., von der Schmitt H., von Krogh J., Wagner A., Wahl C., Ward C. P., Ward D. R., Waterhouse J., Watkins P. M., Watson A. T., Watson N. K., Weber M., Weisz S., Wells P. S., Wermes N., Weymann M., Wilson G. W., Wilson J. A., Wingerter I., Winterer V. H., Wood N. C., Wotton S., Wuensch B., Wyatt T. R., Yaari R., Yang Y., Yekutieli G., Toshida T., Zeuner W. & Zorn G. T.
(1990)
Physics Letters B.
248,
1-2,
p. 211-219
A search has been performed for the production of neutralinos (χ, χ) in e+e- annihilation at energies near the Z0 pole. No evidence for these particles was found either in searches for events with two acoplanar jets, low visible energy, and missing pt (sensitive to Z0→χχ→χχff) or in searches for single-photon events (sensitive to Z0→χχ→χχγ). Model independent upper limits (at the 95% CL) on the branching ratio for the decay mode Z0 →χχ of a few 10-4 are obtained for most of the range of neutralino masses that is kinematically accessible at LEP energies. Upper limits on the mixing factor of neutralinos are also placed as a function of the neutralino masses.
Akrawy M. Z., Alexander G., Allison J., Allport P. P., Anderson K. J., Armitage J. C., Arnison G. T., Ashton P., Azuelos G., Baines J. T., Ball A. H., Banks J., Barker G. J., Barlow R. J., Batley J. R., Becker J., Behnke T., Bell K. W., Bella G., Bethke S., Biebel O., Binder U., Bloodworth I. J., Bock P., Breuker H., Brown R. M., Brun R., Buijs A., Burckhart H. J., Capiluppi P., Carnegie R. K., Carter A. A., Carter J. R., Chang C. Y., Charlton D. G., Chrin J. T., Clarke P. E., Cohen I., Collins W. J., Conboy J. E., Couch M., Coupland M., Cuffiani M., Dado S., Dallavalle G. M., Debu P., Deninno M. M., Dieckmann A., Dittmar M., Dixit M. S., Duchovni E., Duerdoth I. P., Dumas D. J., El Mamouni H., Elcombe P. A., Estabrooks P. G., Etzion E., Fabbri F., Farthouat P., Fischer H. M., Fong D. G., French M. T., Fukunaga C., Gaidot A., Ganel O., Gary J. W., Gascon J., Geddes N. I., Gee C. N., Geich-Gimbel C., Gensler S. W., Gentit F. X., Giacomelli G., Gibson V., Gibson W. R., Gillies J. D., Goldberg J., Goodrick M. J., Gorn W., Granite D., Gross E., Grunhaus J., Hagedorn H., Hagemann J., Hansroul M., Hargrove C. K., Harrus I., Hart J., Hattersley P. M., Hauschild M., Hawkes C. M., Heflin E., Hemingway R. J., Heuer R. D., Hill J. C., Hillier S. J., Ho C., Hobbs J. D., Hobson P. R., Hochman D., Holl B., Homer R. J., Hou S. R., Howarth C. P., Hughes-Jones R. E., Humbert R., Igo-Kemenes P., Ihssen H., Imrie D. C., Jawahery A., Jeffreys P. W., Jeremie H., Jimack M., Jobes M., Jones R. W., Jovanovic P., Karlen D., Kawagoe K., Kawamoto T., Kellogg R. G., Kennedy B. W., Kleinwort C., Klem D. E., Knop G., Kobayashi T., Kokott T. P., Köpke L., Kowalewski R., Kreutzmann H., Kroll J., Kuwano M., Kyberd P., Lafferty G. D., Lamarche F., Larson W. J., Layter J. G., Le Du P., Leblanc P., Lee A. M., Lehto M. H., Lellouch D., Lennert P., Lessard L., Levinson L., Lloyd S. L., Loebinger F. K., Lorah J. M., Lorazo B., Losty M. J., Ludwig J., Ma J., Macbeth A. A., Mannelli M., Marcellini S., Maringer G., Martin A. J., Martin J. P., Mashimo T., Mättig P., Maur U., McMahon T. J., McNutt J. R., McPherson A. C., Meijers F., Menszner D., Merritt F. S., Mes H., Michelini A., Middleton R. P., Mikenberg G., Miller D. J., Milstene C., Minowa M., Mohr W., Montanari A., Mori T., Moss M. W., Murphy P. G., Murray W. J., Nellen B., Nguyen H. H., Nozaki M., O'Dowd A. J., O'Neale S. W., O'Neill B. P., Oakham F. G., Odorici F., Ogg M., Oh H., Oreglia M. J., Orito S., Pansart J. P., Patrick G. N., Pawley S. J., Pfister P., Pilcher J. E., Pinfold J. L., Plane D. E., Poli B., Pouladdej A., Pritchard T. W., Quast G., Raab J., Redmond M. W., Rees D. L., Regimbald M., Riles K., Roach C. M., Robins S. A., Rollnik A., Roney J. M., Rossberg S., Rossi A. M., Routenburg P., Runge K., Runolfsson O., Sanghera S., Sansum R. A., Sasaki M., Saunders B. J., Schaile A. D., Schaile O., Schappert W., Scharff-Hansen P., Schreiber S., Schwarz J., Shapira A., Shen B. C., Sherwood P., Simon A., Singh P., Siroli G. P., Skuia A., Smith A. M., Smith T. J., Snow G. A., Springer R. W., Sproston M., Stephens K., Stier H. E., Ströhmer R., Strom D., Takeda H., Takeshita T., Tsukamoto T., Turner M. F., Tysarczyk-Niemeyer G., Van den plas D., VanDalen G. J., Vasseur G., Virtue C. J., von der Schmitt H., von Krogh J., Wagner A., Wahl C., Ward C. P., Ward D. R., Waterhouse J., Watkins P. M., Watson A. T., Watson N. K., Weber M., Weisz S., Wells P. S., Wermes N., Weymann M., Wilson G. W., Wilson J. A., Wingerter I., Winterer V. H., Wood N. C., Wotton S., Wuensch B., Wyatt T. R., Yaari R., Yang Y., Yekutieli G., Yoshida T., Zeuner W. & Zorn G. T.
(1990)
Physics Letters B.
247,
4,
p. 617-628
We study the inclusive momentum distribution of charged particles in multihadronic events produced in e+e- annihilations at ECM∼M(Z0). We find agreement with the analytical formulae for gluon production that include the phenomena of soft gluon interference. Using data from CM energies between 14 and 91 GeV, we study the dependence of the inclusive momentum distribution on the centre of momentum energy. We find that the analytical formulae describe the data over the entire energy range. Both the momentum distribution at a fixed energy and the change with energy are described by QCD shower Monte Carlo's which include either coherent gluon branchings or string fragmentation. Simple incoherent models with independent fragmentation fail to reproduce the energy dependence and momentum spectra.
Akrawy M. Z., Alexander G., Allison J., Allport P. P., Anderson K. J., Armitage J. C., Arnison G. T., Ashton P., Azuelos G., Baines J. T., Ball A. H., Banks J., Barker G. J., Barlow R. J., Batley J. R., Becker J., Behnke T., Bell K. W., Bella G., Bethke S., Biebel O., Binder U., Bloodworth I. J., Bock P., Breuker H., Brown R. M., Brun R., Buijs A., Burckhart H. J., Capiluppi P., Carnegie R. K., Carter A. A., Carter J. R., Chang C. Y., Charlton D. G., Chrin J. T., Cohen I., Collins W. J., Conboy J. E., Couch M., Coupland M., Cuffiani M., Dado S., Dallavalle G. M., Debu P., Deninno M. M., Dieckmann A., Dittmar M., Dixit M. S., Duchovni E., Duerdoth I. P., Dumas D., El Mamouni H., Elcombe P. A., Estabrooks P. G., Etzion E., Fabbri F., Farthouat P., Fischer H. M., Fong D. G., French M. T., Fukunaga C., Gaidot A., Ganel O., Gary J. W., Gascon J., Geddes N. I., Gee C. N., Geich-Gimbel C., Gensler S. W., Gentit F. X., Giacomelli G., Gibson V., Gibson W. R., Gillies J. D., Goldberg J., Goodrick M. J., Gorn W., Granite D., Gross E., Grosse-Wiesman P., Grunhaus J., Hagedorn H., Hagemann J., Hansroul M., Hargrove C. K., Hart J., Hattersley P. M., Hauschild M., Hawkes C. M., Heflin E., Hemingway R. J., Heuer R. D., Hill J. C., Hillier S. J., Ho C., Hobbs J. D., Hobson P. R., Hochman D., Holl B., Homer R. J., Hou S. R., Howarth C. P., Hughes-Jones R. E., Humbert R., Igo-Kemenes P., Ihssen H., Imrie D. C., Jawahery A., Jeffreys P. W., Jeremie H., Jimack M., Jobes M., Jones R. W., Jovanovic P., Karlen D., Kawagoe K., Kawamoto T., Kellogg R. G., Kennedy B. W., Kleinwort C., Klem D. E., Knop G., Kobayashi T., Kokott T. P., Köpke L., Kowalewski R., Kreutzmann H., von Krogh J., Kroll J., Kuwano M., Kyberd P., Lafferty G. D., Lamarche F., Larson W. J., Layter J. G., Le Du P., Leblanc P., Lee A. M., Lellouch D., Lennert P., Lessard L., Levinson L., Lloyd S. L., Loebinger F. K., Lorah J. M., Lorazo B., Losty M. J., Ludwig J., Lupu N., Ma J., Macbeth A. A., Mannelli M., Marcellini S., Maringer G., Martin A. J., Martin J. P., Mashimo T., Mättig P., Maur U., McMahon T. J., McPherson A. C., Meijers F., Menszner D., Merritt F. S., Mes H., Michelini A., Middleton R. P., Mikenberg G., Miller D. J., Milstene C., Minowa M., Mohr W., Montanari A., Mori T., Moss M. W., Murphy P. G., Murray W. J., Nellen B., Nguyen H. H., Nozaki M., O'Dowd A. J., O'Neale S. W., O'Neill B. P., Oakham F. G., Odorici F., Ogg M., Oh H., Oreglia M. J., Orito S., Pansart J. P., Patrick G. N., Pawley S. J., Pfister P., Pilcher J. E., Pinfold J. L., Plane D. E., Poli B., Pouladdej A., Pritchard T. W., Quast G., Raab J., Redmond M. W., Rees D. L., Regimbald M., Riles K., Roach C. M., Robins S. A., Rollnik A., Roney J. M., Rossberg S., Rossi A. M., Routenburg P., Runge K., Runolfsson O., Sanghera S., Sansum R. A., Sasaki M., Saunders B. J., Schaile A. D., Schaile O., Schappert W., Scharff-Hansen P., von der Schmitt H., Schreiber S., Schwarz J., Shapira A., Shen B. C., Sherwood P., Simon A., Singh P., Siroli G. P., Skuja A., Smith A. M., Smith T. J., Snow G. A., Spreadbury E. J., Springer R. W., Sproston M., Stephens K., Stier H. E., Ströhmer R., Strom D., Takeda H., Takeshita T., Tsukamoto T., Turner M. F., Tysarczyk-Niemeyer G., Van den plas D., VanDalen G. J., Vasseur G., Virtue C. J., Wagner A., Wahl C., Ward C. P., Ward D. R., Waterhouse J., Watkins P. M., Watson A. T., Watson N. K., Weber M., Weisz S., Wells P., Wermes N., Weymann M., Wilson G. W., Wilson J. A., Wingerter I., Winterer V. H., Wood N. C., Wotton S., Wuensch B., Wyatt T. R., Yaari R., Yang Y., Yekutieli G., Yoshida T., Zeuner W. & Zorn G. T.
(1990)
Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics.
247,
2-3,
p. 448-457
Data taken with the OPAL detector at LEP during a scan of the Z0 resonance were searched for evidence of neutral heavy leptons that decay via mixing. Four different decay modes of the neutral heavy lepton are considered: L0→eW*, L0→μW*, L0→τW*, and L0→vZ*. No evidence is seen of a neutral heavy lepton signal; branching fraction limits in the range of 10-3-10-4 are set for Z0→L0L0 and for Z0→vL0 (orvL0) relative to Z0→hadrons.
Duchovni E., Gross E. & Mikenberg G.
(1989)
Physical review D.
39,
1,
p. 365-367
Recent experimental results indicate that the top mass might be above 50 GeV. This would allow for a very light Higgs boson. A technique is suggested for extracting a light-Higgs-boson signal using the reaction e+e- Z0qq»H0qq». The proposed technique is sensitive to an H0 signal for mH
Gross E. & Duchovni E.
(1988)
Physical review D.
38,
7,
p. 2308-2309
One-loop corrections may modify the Higgs potential in such a way that it would not have an absolute minimum at the required value. The requirement that this should not happen excludes a certain range of Higgs-boson and top-quark masses. We reexamine the calculation for a heavy top mass, mtMW.
Elitzur S., Gross E., Rabinovici E. & SEIBERG N.
(1987)
Nuclear Physics B.
283,
C,
p. 413-432
Non-supersymmetric string theories with world-sheet fermions are considered. Different consistent ways of summing over the spin structures lead to various vacua of the bosonic theory. In particular, fermionic models with O(2n) × O(2n) symmetry are equivalent to bosonic systems with non-zero constant torsion. Fermionic models with the non-simply laced symmetry groups O(2n - 1) × O(2n - 1) are bosonized to a string propagating on an orbifold.