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A note on the kinetics of enzyme action: A decomposition that highlights
thermodynamic effects
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a b s t r a c t

Michaelis and Menten’s mechanism for enzymatic catalysis is remarkable both in its simplicity and
its wide applicability. The extension for reversible processes, as done by Haldane, makes it even
more relevant as most enzymes catalyze reactions that are reversible in nature and carry in vivo flux
in both directions. Here, we decompose the reversible Michaelis–Menten equation into three terms,
each with a clear physical meaning: catalytic capacity, substrate saturation and thermodynamic
driving force. This decomposition facilitates a better understanding of enzyme kinetics and high-
lights the relationship between thermodynamics and kinetics, a relationship which is often
neglected. We further demonstrate how our separable rate law can be understood from different
points of view, shedding light on factors shaping enzyme catalysis.
� 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

The kinetic rate law of simple irreversible enzymatic reactions –
introduced by Victor Henri [1] and later rationalized by Michaelis
and Menten [2], Briggs and Haldane [3,4] – is a hallmark of quan-
titative biochemistry [5]. Haldane extended this rate law to revers-
ible reactions to reach a mathematical description, often referred
to as reversible Michaelis–Menten kinetics (the history of the field
is clearly summarized in [6]).

Here, we present a new decomposition of the reversible
Michaelis–Menten rate law. By rewriting Haldane’s formula as a
product of three factors – the maximal rate, the enzyme saturation
level and the thermodynamic driving-force – we analyze the rela-
tive importance of different factors affecting enzyme kinetics. The
original irreversible rate law (i.e. Michaelis–Menten kinetics)
emerges naturally when assuming a thermodynamically highly
favorable reaction and low product concentration.
1.1. Reversible uni-molecular reactions

Reversible Michaelis–Menten kinetics is given by the following
mechanism:

Eþ S �
k1

k2

ES �
k3

k4

EP �
k5

k6

Eþ P: ð1Þ

The steady-state assumption is formulated by equating the time
derivatives of the concentrations of the enzyme complexes to zero,
i.e.:

E ¼ ½Efree� þ ½ES� þ ½EP�

0 ¼ d½ES�
dt
¼ k1 � s � ½Efree� þ k4 � ½EP� � ðk2 þ k3Þ � ½ES�

0 ¼ d½EP�
dt
¼ k6 � p � ½Efree� þ k3 � ½ES� � ðk4 þ k5Þ � ½EP�: ð2Þ

E being the total enzyme concentration; [Efree], [ES] and [EP] corre-
sponding to the concentrations of the free enzyme, the enzyme
bound to the substrate and the enzyme bound to the product,
respectively; s and p represent the concentrations of the substrate
(S) and the product (P). Solving these equations for s and p yields
the following rate law [7]:

v ¼ E
kþcat � s=Ks � k�cat � p=Kp

1þ s=Ks þ p=Kp
: ð3Þ
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The apparent enzymatic parameters, i.e. kcat
+ , kcat

� , Ks and Kp, are di-
rectly derived from the mass-action kinetic parameters by [7]:

Ks ¼
k2k4 þ k2k5 þ k3k5

k1ðk3 þ k4 þ k5Þ

Kp ¼
k2k4 þ k2k5 þ k3k5

k6ðk2 þ k3 þ k4Þ

kþcat ¼
k3k5

k3 þ k4 þ k5

k�cat ¼
k2k4

k2 þ k3 þ k4
: ð4Þ

The kcat values are the maximal forward and backward rates per
unit of enzyme (E), and Ks and Kp are the Michaelis constants, de-
noted more generally by KM.

In his original paper, Haldane noticed an inherent dependency be-
tween the kinetic parameters and reaction thermodynamics [7].
When assuming a reaction has reached equilibrium, and equating
Eq. (3) to zero, the ratio between enzyme efficiencies, i.e. kcat/KM, in
both directions equals K 0eq – a thermodynamic constant representing
the ratio between the concentrations of the product and the substrate
at equilibrium [8]. This was later denoted the Haldane relationship:

kþcat=Ks

k�cat=Kp
¼ K 0eq: ð5Þ
1.2. Rohwer–Hofmeyr decomposition

Rohwer and Hofmeyr [9,10] highlighted the fact that the revers-
ible Michaelis–Menten equation can be rewritten as
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Fig. 1. The capacity, saturation and thermodynamic terms in the separable rate law as a fun
show the value of the capacity term (V+) and the net rate (v) in units of lmol mg�1 min�1. Th
(c) – which are without units. The parameters used for the plot are T = 300 K, V+ = 10 lmol
1 lM in (a), 0.1 lM in (b), and 10 lM in (c). The places on the x-axis where the reaction is at
DrG

0 � chosen in this example, this occurs when the substrate and product concentrations are
not shown in this plot. These examples show that, depending on the concentration of the
substrate can be dominated by thermodynamics (c), saturation (b), or both (a). Similarly, the
v ¼ E � kþcat

Ks
� 1
1þ s=Ks þ p=Kp

� s� p � k
�
cat=Kp

kþcat=Ks

 !
: ð6Þ

To simplify this equation, they defined the rate capacity V+/Ks

(where Vþ � E � kþcat) and the binding term H � 1/(1 + s/Ks + p/Kp).
Using the Haldane relationship, the last term was reduced to

s� p=K 0eq

� �
. Therefore, the reaction rate is:

v ¼ Vþ

Ks
�H � s� p

K 0eq

 !
: ð7Þ

The initial rate of reactions in the linear regime, i.e. when s� Ks

and p = 0, is approximated by v � (V+/Ks) � s. Therefore, the rate
capacity can be directly measured as the slope of v as a function
of s in such conditions.

2. Decomposing the reversible Michaelis–Menten rate law

2.1. A separable rate law

We choose to rewrite the reversible rate law to reflect the
combined effect of the maximal rate, the enzyme saturation le-
vel and the thermodynamic driving-force. We recast Hofmeyr’s
Eq. (7) by moving Ks from the first term to the second term,
like in Refs. [11,12], and moving s from the third term to the
second:

v ¼ E kþcat �
s=Ks

1þ s=Ks þ p=Kp

� �
� 1� p=s

K 0eq

 !
ð8Þ
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ction of the concentration of S and the driving force (�DrG0). The yellow and red lines
e green and blue lines show the values of the saturation (j) and thermodynamic terms

mg�1 min�1, Ks = 3 lM, Kp = 100 lM, and DrG
0� = 0. The concentration of product (p) is

equilibrium are highlighted in blue, i.e. where the reaction driving force is 0. With the
equal. Any point with a lower concentration of S will have a negative net rate (v < 0) –
product, the response of the reaction net rate (v) to changes in the concentration of
values of DrG

0�, Ks, and Kp have similar effects on the relationships between the curves.
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Notably, the resulting last term is the extent of thermodynamic dis-
equilibrium, i.e. the driving force for the biochemical reaction S � P
(as appears in [13] – Eq. 4). To see this, we take the formula for the
change in Gibbs energy of a reaction [14]:

DrG
0 ¼ DrG

0� þ RT lnðp=sÞ ð9Þ

where DrG
0� ¼ �RT ln K 0eq; R is the gas constant, T is the tempera-

ture, and assuming the activity coefficients of S and P are both 1.
It is therefore evident that p=s

K 0eq
¼ eDr G0=RT and hence:

v ¼ E kþcat �
s=Ks

1þ s=Ks þ p=Kp

� �
� ð1� eDr G0=RTÞ ð10Þ

Using this separable rate law, we can identify three factors
whose product determines the rate:

v ¼ Vþ � j � c ð11Þ

where

Vþ � E kþcat

j � s=Ks

1þ s=Ks þ p=Kp

c � 1� eDr G0=RT ð12Þ

We denote (V+) as the capacity term, (j) as the fractional satu-
ration term, and (c) as the thermodynamic term. Examples for how
the three terms vary as a function of the substrate concentration
are given in Fig. 1. Note that kcat

� does not explicitly appear in Eq.
(12), since it is replaced by DrG0 through the use of the Haldane
relationship.

It makes more sense to use Eq. (12) when the reaction pro-
ceeds in the S ? P direction (i.e. DrG0 6 0) as in such conditions
v is positive and the thermodynamic term is bounded: 0 6 c < 1.
Nevertheless, this equation holds just as well when the reaction
proceeds in the opposite direction. In such conditions, v will be
negative and c can be any negative number. Hence, we recom-
mend switching the roles of S and P (and noting that DrG0 is ne-
gated) so that the rate law is written in the favorable (originally
reverse) direction:

v reverse ¼ E k�cat �
p=Kp

1þ p=Kp þ s=Ks

� �
� 1� e�Dr G0=RT
� �

ð13Þ
2.2. Relation to the irreversible Michaelis–Menten equation

One outcome of our proposed formulation appears when con-
sidering very favorable reactions, i.e. when DrG0 ? �1. Under this
assumption, c = 1 and the rate law becomes

lim
Dr G0!�1

v ¼ E kþcat �
s=Ks

1þ s=Ks þ p=Kp

� �
ð14Þ

Interestingly, the denominator in the fractional saturation term
contains p/Kp, which is absent in the irreversible Michaelis–Menten
rate law. This is an outcome of the reversible binding step
EP � E + P, which decreases the amount of available free enzyme
as a function of p. Michaelis and Menten derived their formula for
initial rates, i.e. the rate of reaction at the initial state before the
product has started to accumulate. In this setting, we can assume
p� Kp and arrive at the well-known irreversible Michaelis–Menten
rate law:

v ¼ E kþcat �
s

sþ Ks
: ð15Þ

Note that we can use the limit DrG0 ? �1 here since it is trivially
satisfied by p ? 0.
2.3. Saturation effects

It is useful to investigate the decomposition’s behavior in cases
where the concentrations of the substrate and/or the product are
saturated (	KM) or much below saturation (�KM). We consider
here four interesting cases.

2.3.1. Enzyme is both substrate and product sub-saturated: s � Ks and
p� Kp

In this case, the denominator of the fractional saturation term
(j) is approximately 1 and therefore j � s/Ks. The kinetics in such
a condition will be:

v � E kþcat � s=Ks � ð1� eDr G0=RTÞ: ð16Þ

This kinetics is identical to that assumed for the linear regime of an
irreversible enzyme [15], modulated by the driving force of the
reaction.

2.3.2. Enzyme is substrate saturated but product sub-saturated: s	 Ks

and p� Kp

If the net flux through an enzyme is always in the forward
direction (S ? P), we expect its Ks and Kp to be selected by evo-
lution to achieve this condition. In this case, s/Ks	 1 + p/Kp, and
therefore the fractional saturation term j will approach 1 and
thus:

v � Vþ � c ¼ E kþcat � ð1� eDr G0=RTÞ: ð17Þ

Note that, in this case, the net reaction rate is not affected by the
concentrations of the substrate or the product, except through the
Gibbs energy of the reaction. In addition, kcat

+ is the only kinetic
parameter left in the formula. This approximation is especially use-
ful for thermodynamic metabolic models which typically ignore
saturation effects.

2.3.3. Enzyme is product saturated but substrate sub-saturated: s� Ks

and p	 Kp

This mirrors the previous condition, reversing the roles of S and
P. Therefore, we can use Eq. (13) for the reverse reaction and again
approximate the fractional saturation term by 1, i.e.
vreverse � E k�cat � ð1� e�Dr G0=RTÞ. Note that the value of vreverse is neg-
ative when DrG0 < 0, as expected. The rate of the original reaction
is:

v ¼ �vreverse � E k�cat � ðe�Dr G0=RT � 1Þ: ð18Þ
2.3.4. A generalization in which the enzyme is substrate or product
saturated (or both): s	 Ks and/or p	 Kp

In this last condition, we show how a simplified formula can be
derived for the reaction rate whenever at least one of the reactants
(the substrate and/or the product) is saturated. Note that Sections
2.3.2 and 2.3.3 are special cases of this more general condition.

Here, the saturation term is j � s=Ks
s=Ksþp=Kp

and, therefore, we can
rewrite the entire rate law as:

v � E � kþcats=Ks

p=Kp þ s=Ks

� �
� ð1� eDr G0=RTÞ

¼ E � p=s � 1=kþcat � Ks=Kp þ 1=kþcat

� ��1 � ð1� eDr G0=RTÞ ð19Þ

From the Haldane relationship, in Eq. (5), we can replace
1=kþcat � Ks=Kp with 1= K 0eq � k

�
cat

� �
so we now get

v � E � p=s
K 0eq

� 1
k�cat
þ 1

kþcat

 !�1

� ð1� eDr G0=RTÞ ¼ E
1� eDr G0=RT

1=kþcat þ eDr G0=RT=k�cat

:

ð20Þ
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Since this result generalizes Eqs. (17) and (18), both kcat
+ and

kcat
� play a part in it. It is interesting to note that all three cases

lead to a rate law where concentrations of S and P only appear
implicitly through their effect on DrG0.
(b)

(c)

enzyme-substrate complexes

E

S

E

P

steady state:

reaction coordinates

not
counted

not
counted

Fig. 2. Definition of the forward and backward rates in a reversible reaction. In
general, a reaction mechanism consists of a series of reversible steps (a). In steady
state, the net flux is constant thus determining the difference between forward and
backward fluxes, but their absolute values in each step can vary. It is then essential
to make a rigorous definition of the forward and backward flux for the whole
reaction (for example, to be used in the flux–force relationship). The naïve
definition of the forward rate as ES ? EP (as is typically done for irreversible
reactions) is not suitable, both because ES and EP can refer to various different
complexes, as shown in panel (b), and because these are bound states whose
energetics is different from that of the overall reaction. (c) This can be solved by
defining v+ as the rate at which E binds to S and remains as an enzyme–substrate
complex until a product molecule is released. Thus, for instance, a binding of E to S
giving ES that subsequently decomposes back into E + S is not counted for the
forward (or backward) flux. Similarly, binding of S to E to give ES that is transformed
to EP but then reverts back to ES and then S + E without product release, is also not
counted. This definition is robust to the choice of how to represent the internal
3. The thermodynamic term c and the flux–force relationship

The flux–force relationship [16,17] states that the thermody-
namic driving force determines the ratio of forward and backward
reaction rates in the following way:

vþ
v� ¼ e�Dr G0=RT ð21Þ

where the forward rate (v+) is defined as the rate in which a free
substrate molecule (S) binds to an enzyme (ES), undergoes some
arbitrary path as a bound enzyme–substrate complex (i.e. within
the shaded cyan box in Fig. 2) and is eventually released as a free
product molecule (P). The backward rate (v�) is similarly defined
as the rate in which P binds to the enzyme to form EP, undergoes
an arbitrary path as a complex and eventually is released as S.
The net reaction rate v is the difference between these two rates:

v ¼ vþ � v� ð22Þ

If we follow Haldane’s derivation of the reversible rate law, as ap-
pears in Eq. (3), we find that the expressions for v+ and v� are:

vþ ¼ E
kþcat � s=Ks

1þ s=Ks þ p=Kp
ð23Þ

v� ¼ E
k�cat � p=Kp

1þ s=Ks þ p=Kp
ð24Þ

The forward rate is equal to the product of the first two terms in
the separable rate law, v+ = V+ � j. The last term, c is equivalent to
the ratio between the net rate and the forward rate [18]:

v
vþ ¼

vþ � v�
vþ ¼ 1� v�

vþ ¼ 1� eDr G0=RT ¼ c ð25Þ

This all comes together in the simple formula for the separable rate
law:

v ¼ vþ � v
vþ ¼ Vþ � j � c ð26Þ

Thus, the last term in the separable rate law, c, can be interpreted in
two ways: (a) as the multiplicative term in the separable rate law
which depends only on DrG0 or (b) as the ratio between the net rate
and the forward rate using the flux–force relationship.

A similar approach focuses on the net rate as a fraction of the
total, i.e. the sum of the forward and backward rates [19]:

v
vþ þ v� ¼

1� v�
vþ

1þ v�
vþ
¼ 1� e�Dr G0=RT

1þ e�Dr G0=RT
¼ c

2� c
ð27Þ

Since the flux–force relationship described in Eq. (21) holds for any
biochemical reaction at steady state, this approach is useful even
when considering non-Michaelis–Menten reaction mechanisms.
By assuming the total rate is proportional to the amount of enzyme
(v+ + v� / E), the rate law becomes a simple function of the thermo-
dynamic term:

v / E � c
2� c

ð28Þ
reaction mechanism in terms of the ES and EP micro-states.
3.1. Sensitivity analysis through the elasticity coefficients

Elasticity coefficients quantify the effect of changing the con-
centration of a substrate (or other effectors, such as products or
allosteric regulators) on the rate of a reaction, while keeping all
other factors constant. The definition of the scaled elasticity coeffi-
cient with respect to the substrate concentration is:

ev
s �

@ ln v
@ ln s

ð29Þ
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Elasticity coefficients are used extensively in Metabolic Control
Analysis [20–23], a mathematical framework that describes, for in-
stance, how the activity of a single enzyme controls the pathway
flux. Since control coefficients [20,21,24] are essentially derived
from the elasticity coefficients (and the network topology), under-
standing the different factors that determine the elasticity in differ-
ent regimes may help to get a more intuitive understanding of the
control of flux in multi-enzyme systems. We provide here the for-
mulas for the reaction elasticity coefficient using the terms defined
in the previous sections (namely c and j), but leave it to the moti-
vated reader to make use of these results in the broader context of
Metabolic Control Analysis.

As pointed out by Rohwer and Hofmeyr [10], the multiplicative
nature of the decomposition enables us to express ev

s as a sum of
the elasticities of the three terms:

eVþ
s ¼ 0 ð30Þ

ej
s ¼

@ lnðs=KsÞ � lnð1þ s=Ks þ p=KpÞ
@ ln s

¼ 1� s=Ks

1þ s=Ks þ p=Kp

¼ 1� j ð31Þ

ec
s ¼

@ lnð1� p=s � K 0 �1
eq Þ

@ ln s
¼ c�1 � 1 ð32Þ

ev
s ¼ eVþ

s þ ej
s þ ec

s ¼ c�1 � j ð33Þ

Fig. 3 illustrates how these elasticity coefficients change with
the substrate concentration. At low driving forces, the total elastic-
ity ev

s

� �
is dominated by thermodynamics ej

s � ec
s

� �
and can there-

fore be determined without knowing any of the kinetic constants.

3.2. Generalization for a simplified form of multi-substrate/multi-
product reactions

The derivations performed in this work have all been made for
enzymatic reactions with one substrate and one product. However,
most enzymes catalyze reactions with multiple substrates and
Concentration of S [M]

El
as

tic
ity

 c
oe

ffi
ci

en
t [

un
itl

es
s]

Driving Force [kJ/mol]

Fig. 3. The elasticity coefficients in the separable rate law as a function of the
concentration of S and the driving force (�DrG0). The parameters used for the plot
are the same as in Fig. 1a, i.e. T = 300 K, Ks = 3 lM, Kp = 100 lM, p = 1 lM and
DrG

0 � = 0). One can identify two regimes: [S] < 3 lM – where the green line is below
the blue line (i.e. ej

s < ec
s ) and the response of v to changes in [S] is thermodynam-

ically dominated; and [S] > 3 lM – where the response of v to changes in [S] is
dominated by substrate binding.
products. Therefore, we show how our decomposition can be ex-
tended to describe the kinetics of such enzymes, but focus on a
simple case where the enzyme can only exist in one of three dis-
tinct states: free, all substrates bound, or all products bound. Under
this assumption, the reaction rate v is given by the following rate
law [25]:

v ¼ E

kþcat

Y
i

ðsi=Ks;iÞm
þ
i þ k�cat

Y
j

ðpj=Kp;jÞm
�
j

1þ
Y

i

ðsi=Ks;iÞm
þ
i þ

Y
j

ðpj=Kp;jÞm
�
j

ð34Þ

where for each substrate si is its concentration, mþi is its stoichiom-
etric coefficients, and Ks,i – its Michaelis–Menten constant (and sim-
ilarly for products pj).

By applying the same methodology as in Section 2.1, we intro-
duce DrG0, eliminate kcat

� using the Haldane relationship and re-
write Eq. (34) to arrive at a separable form:

v ¼ E kþcat �

Y
i

ðsi=Ks;iÞmi

1þ
Y

i

ðsi=Ks;iÞmi þ
Y

j

ðpj=Kp;jÞm
�
j

0
BB@

1
CCA � ð1� eDr G0=RTÞ

ð35Þ
3.3. Summary

The formulation presented here – a rate law as a product of the
capacity, saturation and thermodynamic terms – provides an easy
conceptual framework to understand how different factors affect
the net reaction rate. We highlight the didactic value by showing
how the simple and well-studied irreversible rate law is derived
easily by taking the limit p ? 0.

In addition, the separable rate law helps clarify the often ig-
nored connection between thermodynamics and rate. It is a com-
mon misconception to assume that the Gibbs energy change only
determines whether a reaction is feasible, but does not affect the
kinetics. This misconception might arise from to the fact that en-
zymes cannot change the equilibrium constant of areaction. How-
ever, reaction thermodynamics does limit the net flux by imposing
a counter-productive backward flux. In a recent report [26], we
compared the Embden–Meyerhoff–Parnass (EMP) pathway with
the Entner–Doudoroff (ED) pathway and demonstrated how the
relationship between thermodynamics and flux affects the effi-
ciency of whole pathways. By utilizing the separable rate law de-
scribed in Eq. (35) to formulate a protein cost function, we were
able to show that the ED pathway is expected to require several-
fold less enzymatic protein to achieve the same glucose conversion
rate as the EMP pathway.

We hope that the decomposition presented here will be useful
for teaching about reversible Michaelis–Menten kinetics as well
as for research purposes – by clarifying the interrelationships be-
tween enzyme kinetics, capacity, fractional binding saturation
andthe reaction thermodynamics.
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