Publications

2024

  1. T. H. Reingewertz, M. Ben-Maimon, Z. Zafrir, T. Tuller and A. Horovitz (2024)
    Synonymous and non-synonymous codon substitutions can alleviate dependence on GroEL for folding
    Protein Sci. 33, e5087.
    https://onlinelibrary.wiley.com/doi/full/10.1002/pro.5087

2023

  1. M. Roy and A. Horovitz (2023)
    Distinguishing between concerted, sequential and barrierless conformational changes: folding versus allostery
    Curr. Opin. Struct. Biol. 83, 102721.
    https://www.sciencedirect.com/science/article/pii/S0959440X23001951
  2. M. Roy, R. C. Fleisher, A. I. Alexandrov and A. Horovitz (2023)
    Reduced ADP off-rate by the yeast CCT2 double mutation T394P/R510H which causes Leber congenital amaurosis in humans
    Commun. Biol. 6, 888.
    https://www.nature.com/articles/s42003-023-05261-8
  3. D. G. Liebermann, J. Jungwirth, I. Riven, Y. Barak, D. Levy, A. Horovitz, G. Haran (2023)
    From microstates to macrostates in the conformational dynamics of GroEL: a single-molecule FRET study
    J. Phys. Chem. Lett. 14, 6513-6521.
    https://pubmed.ncbi.nlm.nih.gov/37440608/

2022

  1. I. Korobko, R. B. Eberle, M. Roy and A. Horovitz (2022)
    A diminished hydrophobic effect inside the GroEL/ES cavity contributes to protein substrate destabilization.
    Proc. Natl. Acad. Sci. U. S. A. 119, e2213170119.
    https://pubmed.ncbi.nlm.nih.gov/36409898/
  2. J. Singh, R. Anand, A. Horovitz (2022)
    Cooperatively in ATP hydrolysis by MopR is modulated by its signal reception domain and by its protein and phenol concentrations
    J. Bacteriol. 204,e0017922.
    https://pubmed.ncbi.nlm.nih.gov/35862728/
  3. M. Roy and A. Horovitz (2022)
    Partitioning the Hill coefficient into contributions from ligand-promoted conformational changes and subunit heterogeneity
    Protein Sci. 31, e4298.
    https://onlinelibrary.wiley.com/doi/10.1002/pro.4298
  4. A. Horovitz*, T. H. Reingewertz, J. Cuéllar and J. M. Valpuesta* (2022)
    Chaperonin mechanisms: multiple and (mis)understood?
    Annu. Rev. Biophys. 51, 115-133.
    (*corresponding authors)
    https://pubmed.ncbi.nlm.nih.gov/34982571/

2021

  1. S. J. Fleishman and A. Horovitz (2021)
    Extending the new generation of structure predictors to account for dynamics and allostery
    J. Mol. Biol. 433, 167007.
    https://pubmed.ncbi.nlm.nih.gov/33901536/
  2. N. Macro, L. Chen, Y. Yang, T. Mondal, L. Wang, A. Horovitz* and D. Zhong* (2021)
    Slowdown of water dynamics from the top to the bottom of the GroEL cavity
    J. Phys. Chem. Lett. 12, 5723-5730.
    (*corresponding authors)
    https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.1c01216
  3. A. Horovitz and T. Mondal (2021)
    Discriminating between concerted and sequential allosteric mechanisms by comparing equilibrium and kinetic Hill coefficients.
    J. Phys. Chem. B 125, 70-73.
    https://pubs.acs.org/doi/10.1021/acs.jpcb.0c09351

2020

  1. J. Cveticanin, T. Mondal, E. M. Meiering, M. Sharon and A. Horovitz (2020)
    Insight into the autosomal-dominant inheritance pattern of SOD1-associated ALS from native mass spectrometry.
    J. Mol. Biol. 432, 5995-6002.
    www.sciencedirect.com/science/article/pii/S0022283620305817
  1. I. Korobko, H. Mazal, G. Haran and A. Horovitz (2020)
    Measuring protein stability in the GroEL chaperonin cage reveals massive destabilization.
    eLife 9, e56511.
    elifesciences.org/articles/56511

2019

  1. R. Gruber, T. Mondal and A. Horovitz (2019)
    GroEL allostery illuminated by a relationship between the Hill coefficient and the MWC model.
    Biophys. J. 117, 1915-1921.
    https://www.sciencedirect.com/science/article/pii/S0006349519308604?via%3Dihub
  2. I. Cooper, D. Atrakchi, M. D. Walker, A. Horovitz, M. Fridkin and Y. Shechter (2019)
    Converting bleomycin into a prodrug that undergoes spontaneous reactivation under physiological conditions.
    Toxicol. Appl. Pharmacol. 384, 114782.
    https://www.sciencedirect.com/science/article/pii/S0041008X19303904?via%3Dihub
  3. L. S. Bigman and A. Horovitz (2019)
    Reconciling the controversy regarding the functional importance of bullet- and football-shaped GroE complexes.
    J. Biol. Chem. 294, 13527-135279.
    http://www.jbc.org/content/294/37/13527
  4. S. J. Wodak, E. Paci, N. V. Dokholyan, I. N. Berezovsky, A. Horovitz, J. Li, V. J. Hilser, I. Bahar, J. Karanicolas, G. Stock, P. Hamm, R. H. Stote, J. Eberhardt, Y. Chebaro, A. Dejaegere, M. Cecchini, J.-P. Changeux, D. Keri, P. Barth, P. G. Bolhuis, J. Vreede, P. Faccioli, S. Orioli, R. Ravasio, L. Yan, C. Brito, M. Wyart, P. Gkeka, I. Rivalta, G. Palermo, J. A. McCammon, J. Panecka-Hofman, R. C. Wade, A. Di Pizio, M. Y. Niv, R. Nussinov, C.-J. Tsai, H. Jang, D. Padhorny, D. Kozakov, T. McLeish (2019)
    Allostery in its many disguises: from theory to applications
    Structure 27, 566-578.
    https://www.sciencedirect.com/science/article/pii/S0969212619300036?via%3Dihub
  5. A. Horovitz, R. C. Fleisher and T. Mondal (2019)
    Double-mutant cycles: new directions and applications
    Curr. Opin. Struct. Biol. 58, 10-17.
    https://www.sciencedirect.com/science/article/pii/S0959440X19300259
  6. B. Bandyopadhyay, T. Mondal, R. Unger and A. Horovitz (2019)
    Contact order is a determinant for the dependence of GFP folding on the chaperonin GroEL
    Biophys. J. 116, 42-48.
    https://www.sciencedirect.com/science/article/pii/S0006349518312840?via%3Dihub

2018

  1. J. Cveticanin, R. Netzer, G. Arkind, S. J. Fleishman, A. Horovitz* and M. Sharon* (2018)
    Estimating interprotein pairwise interaction energies in cell lysates from a single native mass spectrum.
    Anal. Chem. 90, 10090-10094.
    (*corresponding authors)
    https://pubs.acs.org/doi/10.1021/acs.analchem.8b02349
  2. D. Schwarz, O. Adato, A. Horovitz and R. Unger (2018)
    Comparative genomic analysis of mollicutes with and without a chaperonin system
    PLoS One 13, e0192619.
    https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0192619
  3. R. Gruber and A. Horovitz (2018)
    Unpicking allosteric mechanisms of homo-oligomeric proteins by determining their successive ligand binding constants
    Phil. Trans. R. Soc. London Ser. B 373, 20170176..
    http://rstb.royalsocietypublishing.org/content/373/1749/20170176.long

2017

  1. B. Bandyopadhyay, A. Goldenzweig, T. Unger, O. Adato, S. J. Fleishman, R. Unger and A. Horovitz (2017)
    Local energetic frustration affects the dependence of GFP folding on the chaperonin GroEL
    J. Biol. Chem. 292, 20583-20591.
    http://www.jbc.org/content/early/2017/10/24/jbc.M117.808576.full.pdf
  2. R. Gruber, M. Levitt and A. Horovitz (2017)
    Sequential allosteric mechanism of ATP hydrolysis by the CCT/TRiC chaperone is revealed through Arrhenius analysis
    Proc. Natl. Acad. Sci. U. S. A. 114, 5189-5194.
    http://www.pnas.org/content/114/20/5189.long
  3. M. Sokolovski, J. Cveticanin, D. Hayoun, I. Korobko, M. Sharon and A. Horovitz  (2017)
    Measuring inter-protein pairwise interaction energies from a single native mass spectrum by double-mutant cycle analysis
    Nat. Commun. 8, 212.
    http://rdcu.be/uRI4

2016

  1. I. Korobko, M. Nadler-Holly and A. Horovitz (2016)
    Transient kinetic analysis of ATP hydrolysis by the CCT/TRiC chaperonin
    J. Mol. Biol. 428, 4520-4527.
    https://www.ncbi.nlm.nih.gov/pubmed/27686496
  2. R. Gruber and A. Horovitz (2016)
    Allosteric mechanisms in chaperonin machines
    Chem. Rev. 116, 6588-6606.
    http://pubs.acs.org/doi/abs/10.1021/acs.chemrev.5b00556

2015

  1. W. Mao, C. Kaya, A. Dutta, A. Horovitz and I. Bahar (2015)
    Comparative study of the effectiveness and limitations of current methods for detecting sequence coevolution
    Bioinformatics 31, 1929-1937.
    http://www.ncbi.nlm.nih.gov/pubmed/25697822
  2. M. Sokolovski, A. Bhattacherjee, N. Kessler, Y. Levy and A. Horovitz (2015)
    Thermodynamic protein destabilization by GFP tagging: a case of inter-domain allostery
    Biophys. J. 109, 1157-1162.
    http://www.sciencedirect.com/science/article/pii/S0006349515004506
  3. I. Grossman, H. Y. Aviram, G. Armony, A. Horovitz, H. Hofmann, G. Haran and D. Fass (2015)
    Single-molecule spectroscopy exposes hidden states in an enzymatic electron relay
    Nat. Commun. 6, 8624.
    http://www.nature.com/ncomms/2015/151015/ncomms9624/full/ncomms9624.html
  4. E. Jacob, R. Unger and A. Horovitz (2015)
    Codon-level information improves predictions of inter-residue contacts in proteins by correlated mutation analysis
    eLife 4, e08932.
    https://elifesciences.org/content/4/e08932
  5. M. Sharon and A. Horovitz (2015)
    Probing allosteric mechanisms using native mass-spectrometry
    Curr. Opin. Struct. Biol. 34, 7-16.
    http://www.sciencedirect.com/science/article/pii/S0959440X15000627

2014

  1. J. Franck, M. Sokolovski, N. Kessler, E. Matalon, M. Gordon-Grossman, S. Han, D. Goldfarb and A. Horovitz (2014)
    Probing water density and dynamics in the chaperonin GroEL cavity
    J. Amer. Chem. Soc. 136, 9396-9403.
    http://pubs.acs.org/doi/abs/10.1021/ja503501x
  2. O. Matalon, A. Horovitz and E. D. Levy (2014)
    Different subunits belonging to the same protein complex often exhibit discordant expression levels and evolutionary properties
    Curr. Opin. Struct. Biol. 26, 113-120.
    http://www.sciencedirect.com/science/article/pii/S0959440X14000645

2013

  1. A. Azia, V. N. Uversky, A. Horovitz and R. Unger (2013)
    The effects of mutations on protein function: a comparative study of three databases of mutations in humans
    Isr. J. Chem. 53, 217-226.
    http://onlinelibrary.wiley.com/doi/10.1002/ijch.201300011/abstract
  2. E. Jacob, R. Unger and A. Horovitz (2013)
    N-terminal domains in two-domain proteins are biased to be shorter and predicted to fold faster than their C-terminal counterparts
    Cell Rep. 3, 1051-1056.
    http://www.sciencedirect.com/science/article/pii/S221112471300154X
  3. A. Horovitz (2013)
    Putting handcuffs on the chaperonin GroEL
    Proc. Natl. Acad. Sci. U. S. A. 110, 10884-10885.
    http://www.pnas.org/content/110/27/10884.long
  4. A. Dyachenko, R. Gruber, L. Shimon, A. Horovitz* and M. Sharon* (2013)
    Allosteric mechanisms can be distinguished using structural mass spectrometry
    Proc. Natl. Acad. Sci. U. S. A. 110, 7235-7239.
    (*corresponding authors)
    http://www.pnas.org/content/110/18/7235.long
  5. A. Horovitz (2013)
    Double-mutant cycle analysis
    In: Encyclopedia of Biophysics (Roberts, G. C. K., ed.), pp. 510-512 (Springer-Verlag, Berlin

2012

  1. H. M. Piwonski, M. Goomanovsky, D. Bensimon, A. Horovitz and G. Haran (2012)
    Allosteric inhibition of individual enzyme molecules trapped in lipid vesicles
    Proc. Natl. Acad. Sci. U. S. A. 109, E1437-E1443.
    http://www.pnas.org/content/109/22/E1437.long
  2. M. Nadler-Holly, M. Breker, R. Gruber, A. Azia, M. Gymrek, M. Eisenstein, K. R. Willison, M. Schuldiner and A. Horovitz (2012)
    Interactions of subunit CCT3 in the yeast chaperonin CCT/TRiC with Q/N-rich proteins
    revealed by high-throughput microscopy analysis
    Proc. Natl. Acad. Sci. U. S. A. 109, 18833-18838.
    http://www.pnas.org/content/109/46/18833.long
  3. G. A. Frank*, A. Horovitz and G. Haran (2012)
    Fluorescence correlation spectroscopy and allostery: the case of GroEL
    Methods Mol. Biol. 796, 205-216.
    (*corresponding author)
    http://link.springer.com/protocol/10.1007%2F978-1-61779-334-9_11
  4. A. Azia, R. Unger and A. Horovitz (2012)
    What distinguishes GroEL substrates from other Escherichia coli proteins?
    FEBS J. 279, 543-550.
    http://onlinelibrary.wiley.com/doi/10.1111/j.1742-4658.2011.08458.x/abstract

2010

  1. M. Amit, S. J. Weisberg, M. Nadler-Holly, E. A. McCormack, E. Feldmesser, D. Kaganovich, K. R. Willison and A. Horovitz (2010)
    Equivalent mutations in the eight subunits of the eukaryotic chaperonin CCT produce dramatically different cellular and gene expression phenotypes
    J. Mol. Biol. 401, 532-543.
    http://www.sciencedirect.com/science/article/pii/S0022283610006686           
  2. L. Shimon, M. Sharon and A. Horovitz (2010)
    A method for removing effects of non-specific binding on the distribution of binding stochiometries: application to mass spectroscopy data
    Biophys. J. 99, 1645-1649.
    http://www.ncbi.nlm.nih.gov/pubmed/20816078
  3. G. A. Frank, M. Goomanovsky, A. Davidi, G. Ziv, A. Horovitz* and G. Haran* (2010)
    Out-of-equilibrium conformational cycling of GroEL at saturating ATP concentrations
    Proc. Natl. Acad. Sci. U. S. A. 107, 6270-6274.
    (*corresponding authors)
    http://www.pnas.org/content/107/14/6270.long

2009

  1. O. Noivirt-Brik, R. Unger and A. Horovitz (2009)
    Analysing the origin of long-range interactions in proteins using lattice models
    BMC Struct. Biol. 9, 4.
    http://bmcstructbiol.biomedcentral.com/articles/10.1186/1472-6807-9-4
  2. A. Parnas, M. Nadler, S. Nisemblat, A. Horovitz*, H. Mandel and A. Azem* (2009)
    The MitCHAP-60 disease is due to entropic destabilization of the human mitochondrial hsp60 oligomer
    J. Biol. Chem. 284, 28198-28203.
    (*corresponding authors)
    http://www.jbc.org/content/284/41/28198.long
  3. O. Noivirt-Brik, A. Horovitz* and R. Unger (2009)
    Trade-off between positive and negative design of protein stability: from lattice models to real proteins
    PLoS Comput. Biol. 5, e1000592.
    (*corresponding author)
    http://www.ncbi.nlm.nih.gov/pubmed/20011105

2008

  1. L. Shimon, G. M. Hynes, E. A. McCormack, K. R. Willison and A. Horovitz (2008)
    ATP-induced allostery in the eukaryotic chaperonin CCT is abolished by the mutation
    G345D in CCT4 that renders yeast temperature-sensitive for growth
    J. Mol. Biol. 377, 469-477.
    http://www.sciencedirect.com/science/article/pii/S0022283608000296
  2. N. Papo, Y. Kipnis, G. Haran and A. Horovitz (2008)
    Concerted release by ATP of individual domains of a protein substrate of GroEL is demonstrated with FRET
    J. Mol. Biol. 380, 717-725.
    http://www.ncbi.nlm.nih.gov/pubmed/18556021
  3. G. A. Frank, Y. Kipnis, E. Smolensky, S. S. Daube, A. Horovitz and G. Haran (2008)
    Design of an optical switch for studying conformational dynamics in individual molecules of GroEL
    Bioconjugate Chem. 19, 1339-1341.
    http://pubs.acs.org/doi/abs/10.1021/bc800118j

2007

  1. F. Naider, J. M. Becker, Y. -H. Lee and A. Horovitz (2007)
    Double-mutant cycle scanning of the interaction of a peptide ligand and its G protein-coupled receptor
    Biochemistry 46, 3476-3481.
    http://pubs.acs.org/doi/abs/10.1021/bi602415u
  2. Y. Kipnis, N. Papo, G. Haran and A. Horovitz (2007)
    Concerted ATP-induced allosteric transitions in GroEL facilitate release of protein substrate domains in an all-or-none manner
    Proc. Natl. Acad. Sci. U. S. A. 104, 3119-3124.
    http://www.pnas.org/content/104/9/3119.long
  3. E. Jacob, A. Horovitz and R. Unger (2007)
    Different mechanistic requirements for prokaryotic and eukaryotic chaperonins: a lattice study
    Bioinformatics 23, i240-i248.
    http://bioinformatics.oxfordjournals.org/content/23/13/i240.long
  4. O. Noivirt-Brik, R. Unger and A. Horovitz (2007)
    Low folding propensity and high translation efficiency distinguish in vivo substrates of GroEL from other E. coli proteins
    Bioinformatics 23, 3276-3279.
    http://bioinformatics.oxfordjournals.org/content/23/24/3276.long

2006

  1. O. Danziger, L. Shimon and A. Horovitz (2006)
    Glu257 in GroEL is a sensor involved in coupling polypeptide substrate binding to stimulation of ATP hydrolysis
    Protein Sci. 15, 1270-1276.
    http://onlinelibrary.wiley.com/doi/10.1110/ps.062100606/abstract

2005

  1. D. Rivenzon-Segal, S. G. Wolf, L. Shimon, K. R. Willison and A. Horovitz (2005)
    Sequential ATP-induced allosteric transitions of the cytoplasmic chaperonin containing TCP-1 revealed by EM analysis
    Nat. Struct. Mol. Biol. 12, 233-237.
    http://www.nature.com/nsmb/journal/v12/n3/full/nsmb901.html
  2. O. Noivirt, M. Eisenstein and A. Horovitz (2005)
    Detection and reduction of evolutionary noise in correlated mutation analysis
    Protein Eng. Des. Sel. 18, 247-253.
    http://peds.oxfordjournals.org/content/18/5/247.long
  3. A. Horovitz and K. R. Willison (2005)
    Allosteric regulation of chaperonins
    Curr. Opin. Struct. Biol. 15, 646-651. http://www.sciencedirect.com/science/article/pii/S0959440X05001880

2004

  1. A. Amir and A. Horovitz (2004)
    Kinetic analysis of ATP-dependent inter-ring communication in GroEL
    J. Mol. Biol. 338, 979-988.
    http://www.sciencedirect.com/science/article/pii/S0022283604003456

2003

  1. G. Kafri and A. Horovitz (2003)
    Transient kinetic analysis of ATP-induced allosteric transitions in the eukaryotic chaperonin containing TCP-1
    J. Mol. Biol. 326, 981-987.
    http://www.sciencedirect.com/science/article/pii/S0022283603000469
  2. O. Danziger, D. Rivenzon-Segal, S. G. Wolf and A. Horovitz (2003)
    Conversion of the allosteric transition of GroEL from concerted to sequential by the single mutation Asp-155®Ala
    Proc. Natl. Acad. Sci. U. S. A. 100, 13797-13802.
    http://www.pnas.org/content/100/24/13797.long

2002

  1. Y. Fridmann, G. Kafri, O. Danziger and A. Horovitz (2002)
    Dissociation of the GroEL-GroES asymmetric complex is accelerated by increased cooperativity in ATP binding to the GroEL ring distal to GroES
    Biochemistry 41, 5938-5944.
    http://pubs.acs.org/doi/abs/10.1021/bi020117v
  2. I. Kass and A. Horovitz (2002)
    Mapping pathways of allosteric communication in GroEL by analysis of correlated mutations
    Proteins: Struct. Funct. & Genet. 48, 611-617.
    http://onlinelibrary.wiley.com/doi/10.1002/prot.10180/abstract
  3. A. Horovitz, A. Amir, O. Danziger and G. Kafri (2002)
    Φ-value analysis of heterogeneity in pathways of allosteric transitions: evidence for parallel pathways of ATP-induced conformational changes in a GroEL ring
    Proc. Natl. Acad. Sci. U. S. A. 99, 14095-14097.
    http://www.pnas.org/content/99/22/14095.long

2001

  1. A. Horovitz, Y. Fridmann, G. Kafri and O. Yifrach (2001)
    Review: Allostery in chaperonins
    J. Struct. Biol. 135, 104-114.
    http://www.sciencedirect.com/science/article/pii/S1047847701943771
  2. G. Kafri, K. R. Willison and A. Horovitz (2001)
    Nested allosteric interactions in the cytoplasmic chaperonin containing TCP-1
    Protein Sci. 10, 445-449.
    http://onlinelibrary.wiley.com/doi/10.1110/ps.44401/abstract

2000

  1. A. Zvi, V. Tugarinov, G. A. Faiman, A. Horovitz and J. Anglister (2000)
    A model of a gp120 V3 peptide in complex with an HIV-neutralizing antibody based on NMR and mutant cycle-derived constraints
    Eur. J. Biochem. 267, 767-779.
    http://onlinelibrary.wiley.com/wol1/doi/10.1046/j.1432-1327.2000.01055.x/abstract
  2. O. Yifrach and A. Horovitz (2000)
    Coupling between protein folding and allostery in the GroE chaperonin system
    Proc. Natl. Acad. Sci. U. S. A. 97, 1521-1524.
    http://www.pnas.org/content/97/4/1521.long
  3. A. Horovitz and O. Yifrach (2000)
    On the relationship between the Hill coefficients for steady-state and transient kinetic data: a criterion for concerted transitions in allosteric proteins
    Bull. Math. Biol. 62, 241-246.
  4. Y. Fridmann, S. Ulitzur and A. Horovitz (2000)
    In vivo and in vitro function of GroEL mutants with impaired allosteric properties
    J. Biol. Chem. 275, 37951-37956.
    http://www.jbc.org/content/275/48/37951.long

1998

  1. A. Horovitz (1998)
    Structural aspects of GroEL function
    Curr. Opin. Struct. Biol. 8, 93-100.
    http://www.sciencedirect.com/science/article/pii/S0959440X98800158
  2. O. Yifrach and A. Horovitz (1998)
    Transient kinetic analysis of adenosine 5'-triphosphate binding-induced conformational changes in the allosteric chaperonin GroEL
    Biochemistry 37, 7083-7088.
    http://pubs.acs.org/doi/abs/10.1021/bi980370o
  3. O. Yifrach and A. Horovitz (1998)
    Mapping the transition state of the allosteric pathway of GroEL by protein engineering
    J. Amer. Chem. Soc. 120, 13262-13263.
    http://pubs.acs.org/doi/abs/10.1021/ja983136u?journalCode=jacsat&quickLinkVolume=120&quickLinkPage=13262&selectedTab=citation&volume=120

1997

  1. A. Aharoni and A. Horovitz (1997)
    Detection of changes in pairwise interactions during allosteric transitions: coupling between local and global conformational changes in GroEL
    Proc. Natl. Acad. Sci. U. S. A. 94, 1698-1702.
    http://www.pnas.org/content/94/5/1698.long
  2. H. E. White, S. Chen, A. M. Roseman, O. Yifrach, A. Horovitz and H. R. Saibil (1997)
    Structural basis of allosteric changes in the GroEL mutant Arg197→Ala
    Nat. Struct. Biol. 4, 690-694.
    http://www.nature.com/nsmb/journal/v4/n9/abs/nsb0997-690.html
  3. E. Inbar and A. Horovitz (1997)
    GroES promotes the T to R transition of the GroEL ring distal to GroES in the GroEL-GroES complex
    Biochemistry 36, 12276-12281.
    http://pubs.acs.org/doi/abs/10.1021/bi9714870
  4. G. A. Faiman and A. Horovitz (1997)
    Thermodynamic analysis of the interaction between the 0.5ß Fv fragment and the RP135 peptide antigen derived from the V3 loop of HIV-1 gp120
    J. Biol. Chem. 272, 31407-31411.
    http://www.jbc.org/content/272/50/31407.long

1996

  1. A. Horovitz (1996)
    Double-mutant cycles: a powerful tool for analysing protein structure and function
    Folding & Design 1, R121-R126.
    http://www.sciencedirect.com/science/article/pii/S1359027896000569
  2. O. Yifrach and A. Horovitz (1996)
    Allosteric control by ATP of non-folded protein binding to GroEL
    J. Mol. Biol. 255, 356-361.
    http://www.sciencedirect.com/science/article/pii/S0022283696900285
  3. G. A. Faiman and A. Horovitz (1996)
    On the choice of reference mutant states in the application of the double-mutant cycle method
    Protein Eng. 9, 315-316.
    http://peds.oxfordjournals.org/content/9/3/315.long
  4. A. Aharoni and A. Horovitz (1996)
    Inter-ring communication is disrupted in the GroEL mutant Arg13→Gly; Ala126→Val with known crystal structure
    J. Mol. Biol. 258, 732-735.
    http://www.sciencedirect.com/science/article/pii/S002228369690282X
  5. G. A. Faiman, R. Levy, J. Anglister and A. Horovitz (1996)
    Contribution of arginine residues in the RP135 peptide derived from the V3 loop of gp120 to its interaction with the Fv fragment of the 0.5ß HIV-1 neutralizing antibody
    J. Biol. Chem. 271, 13829-13833.
    http://www.jbc.org/content/271/23/13829.long

1995

  1. A. Horovitz (1995)
    The relation between co-operativity in ligand binding and intramolecular co‑operativity in allosteric proteins
    Proc. R. Soc. London Ser. B 259, 85-87.
  2. O. Yifrach and A. Horovitz (1995)
    Nested co-operativity in the ATPase activity of the oligomeric chaperonin GroEL
    Biochemistry 34, 5303-5308.
    http://pubs.acs.org/doi/abs/10.1021/bi00016a001?journalCode=bichaw&quickLinkVolume=34&quickLinkPage=5303&selectedTab=citation&volume=34

1994

  1. E. S. Bochkareva, A. Horovitz and A. S. Girshovich (1994)
    Direct demonstration that ATP is in contact with Cys-137 in chaperonin GroEL
    J. Biol. Chem. 269, 44-46.
    http://www.jbc.org/content/269/1/44.long
  2. A. Horovitz, E. S. Bochkareva, O. Yifrach and A. S. Girshovich (1994)
    Prediction of an inter-residue interaction in the chaperonin GroEL from multiple sequence alignment is confirmed by double-mutant cycle analysis
    J. Mol. Biol. 238, 133-138.
    http://www.sciencedirect.com/science/article/pii/S0022283684712757
  3. O. Yifrach and A. Horovitz (1994)
    Two lines of allosteric communication in the oligomeric chaperonin GroEL are revealed by the single mutation Arg196→Ala
    J. Mol. Biol. 243, 397-401.
    http://www.sciencedirect.com/science/article/pii/S0022283684716676
  4. O. Kovalenko, O. Yifrach and A. Horovitz (1994)
    Residue Lysine-34 in GroES modulates allosteric transitions in GroEL
    Biochemistry 33, 14974-14978.
    http://pubs.acs.org/doi/abs/10.1021/bi00254a004?journalCode=bichaw&quickLinkVolume=33&quickLinkPage=14974&selectedTab=citation&volume=33
  5. D. Lancet, A. Horovitz and E. Katchalski-Katzir (1994)
    Molecular recognition in biology: models for analysis of protein-ligand interactions
    In: 100 Years of the Lock-and-Key Principle (Behr, J. -P., ed.), pp. 25-71 (J. Wiley, NY)

1993

  1. A. Horovitz, E. S. Bochkareva, O. Kovalenko and A. S. Girshovich (1993)
    Mutation Ala2→Ser destabilizes intersubunit interactions in the molecular chaperone GroEL
    J. Mol. Biol. 231, 58-64.
    http://www.sciencedirect.com/science/article/pii/S0022283683712568
  2. A. Horovitz, E. S. Bochkareva and A. S. Girshovich (1993)
    The N terminus of the molecular chaperonin GroEL is a crucial structural element for its assembly
    J. Biol. Chem. 268, 9957-9959.
    http://www.jbc.org/content/268/14/9957.long

1992

  1. A. Horovitz, J. M. Matthews and A. R. Fersht (1992)
    α-helix stability in proteins  II.  Factors that influence stability at an internal position
    J. Mol. Biol. 227, 560-568.
    http://www.sciencedirect.com/science/article/pii/0022283692909072
  2. C. Sander, G. Vriend, F. Bazan, A. Horovitz, H. Nakamura, L. Ribas, A. V. Finkelstein, A. Lockhart, R. Merkl, L. J. Perry, S. C. Emery, C. Gaboriaud, C. Marks, J. Moult, C. Verlinde, M. Eberhard, A. Elofsson, T. J. P. Hubbard, L. Regan, J. Banks, R. Jappelli, A. M. Lesk and A. Tramontano (1992)
    Protein design on computers. Five new proteins: Shpilka, Grendel, Fingerclasp, Leather and Aida
    Proteins: Struct. Funct. & Genet. 12, 105-110.
    http://onlinelibrary.wiley.com/doi/10.1002/prot.340120203/abstract
  3. A. Horovitz and A. R. Fersht (1992)
    Co-operative interactions during protein folding
    J. Mol. Biol. 224, 733-740.
    http://www.sciencedirect.com/science/article/pii/002228369290557Z

1991

  1. A. R. Fersht, M. Bycroft, A. Horovitz, J. T. Kellis, A. Matouschek and L. Serrano (1991)
    Pathway and stability of protein folding
    Phil. Trans. R. Soc. London Ser. B 332, 171-176.
    http://rstb.royalsocietypublishing.org/content/332/1263/171.long
  2. A. Horovitz, L. Serrano and A. R. Fersht (1991)
    COSMIC analysis of the major α-helix of barnase during folding
    J. Mol. Biol. 219, 5-9.
    http://www.sciencedirect.com/science/article/pii/002228369190852W

1990

  1. A. Horovitz and A. R. Fersht (1990)
    Strategy for analysing the co-operativity of intramolecular interactions in peptides and proteins
    J. Mol. Biol. 214, 613-617.
    http://www.sciencedirect.com/science/article/pii/00222836909027
  2. L. Serrano, A. Horovitz, B. Avron, M. Bycroft and A. R. Fersht (1990)
    Estimating the contribution of engineered surface electrostatic interactions to protein stability by using double mutant cycles
    Appendix: Measurement of direct electrostatic effects and other pairwise interactions from changes in unfolding energies
    Biochemistry 29, 9343-9352.
    http://pubs.acs.org/doi/abs/10.1021/bi00492a006?journalCode=bichaw&quickLinkVolume=29&quickLinkPage=9343&selectedTab=citation&volume=29
  3. A. Horovitz, L. Serrano, B. Avron, M. Bycroft and A. R. Fersht (1990)
    Strength and co-operativity of contributions of surface salt bridges to protein stability Appendix: Interpretation of coupling energies in multiple thermodynamic cycles of mutants
    J. Mol. Biol. 216, 1031-1044.
    http://www.sciencedirect.com/science/article/pii/S0022283699800187

1989

  1. A. Horovitz, N. Ohad and J. Hirschberg (1989)
    Predicted effects on herbicide binding of amino acid substitutions in the D1 protein of photosystem II
    FEBS Lett. 243, 161-164.
    http://www.sciencedirect.com/science/article/pii/S002251938980236X
  2. A. Horovitz and R. D. Levine (1989)
    Knowledge-based predictions of binding constants for engineered enzymes
    J. Theor. Biol. 141, 557-562.
    http://www.sciencedirect.com/science/article/pii/S002251938980236X

1987

  1. M. Rigbi, H. Levy, F. Iraqi, M. Teitelbaum, M. Orevi, A. Alajoutsijarvi, A. Horovitz and R. Galun (1987)
    The saliva of the medicinal leech Hirudo medicinalis I.  Biochemical characterization of the high molecular weight fraction
    Comp. Biochem. Physiol. 87B, 567-573.
  2. M. Rigbi, H. Levy, A. Eldor, F. Iraqi, M. Teitelbaum, M. Orevi, A. Horovitz and R. Galun (1987)
    The saliva of the medicinal leech Hirudo medicinalis II.  Inhibition of platelet aggregation and of leukocyte activity and examination of reputed anaesthetic effects
    Comp. Biochem. Physiol. 88C, 95-98.
  3. A. Horovitz (1987)
    Non-additivity in protein-protein interactions
    J. Mol. Biol. 196, 733-735.
    http://www.sciencedirect.com/science/article/pii/0022283687900453
  4. A. Horovitz and A. Levitzki (1987)
    An accurate method for the determination of receptor-ligand and enzyme-inhibitor dissociation constants from displacement curves
    Proc. Natl. Acad. Sci. U. S. A. 84, 6654-6658.
    http://www.pnas.org/content/84/19/6654.long

1986

  1. A. Horovitz (1986)
    Measures of cooperativity in the binding of ligands to proteins and their relation to non‑additivity in protein-protein interactions
    Proc. R. Soc. London Ser. B 229, 315-329.

1985

  1. A. Horovitz and M. Rigbi (1985)
    Protein-protein interactions: Additivity of the free energies of association of amino acid residues
    J. Theor. Biol. 116, 149-159.
    http://www.sciencedirect.com/science/article/pii/S0022519385801351

1983

  1. A. Horovitz and T. Ben-Hur (1983)
    A model for the kinetics of crime
    J. Theor. Biol. 103, 609-617.
    http://www.sciencedirect.com/science/article/pii/0022519383902850