April 18, 1994 - April 18, 2027

  • Date:27ThursdayApril 2017

    Directed percolation transition to turbulence

    More information
    Time
    11:15 - 12:30
    Location
    Edna and K.B. Weissman Building of Physical Sciences
    Auditorium
    Lecturer
    Bjorn Hof
    IST Austria
    Organizer
    Faculty of Physics
    Contact
    DetailsShow full text description of 11:00 – coffee, tea, and more...»
    11:00 – coffee, tea, and more
    AbstractShow full text abstract about The transition to turbulence in simple shear flows, like pip...»
    The transition to turbulence in simple shear flows, like pipe, channel and Couette flow, has remained an open problem for over a century. Typically here turbulence arises despite the linear stability of the laminar flow and results from perturbations of finite amplitude. Turbulence at first appears in the form of localised patches (e.g. puffs, spots or stripes) which coexist with laminar flow, resulting in complex, disordered flow patterns (spatio-temporal intermittency). Individual turbulent domains can collapse or they can proliferate and seed other patches of turbulence. The time scales on which flows evolve are extremely large and likewise are the relevant length scales. Characterizing the transition process hence requires experiments of very large aspect ratios and extremely long observation times. In detailed experiments and direct numerical simulations of Couette flow we could for the first time determine the critical exponents that characterize this transition and show that it falls into the directed percolation universality class. In addition I will show how the obtained insights can be used to control and even fully suppress turbulence.
    Colloquia