• Skip to main content
  • Skip to navigation
  • Skip to search
  • Skip to site-map
  • Share on Facebook
  • Share on Tweet
  • Share with Email
  • Share with WhatsApp
Accessibility
  • Increase font size
  • Decrease font size
  • Sharpen color
  • Grayscale
  • Invert color
  • Stop slider in Homepage
  • Default
Disclaimerclose
Weizmann Institute of Science
Faculty of Chemistry
Department ofEarth and Planetary Sciences
Menu
  • Home
  • Research
  • Faculty
    & Staff
  • Stories & Discoveries
  • Events
  • Gallery
  • Courses
  • Academic Positions
  • Centers
  • Contact

Events

You are here

  1. Home/
  2. Events/
  3. Events/
  4. Events/
  5. Events
  • Upcoming Events
  • Previous events
  • Lecture

    TBA

    Date: Sunday, March 26, 2023 Hour: 11:00
    Speaker: Naama Lang-Yona, Technion, Haifa
    Share the event TBA on email Add the event TBA to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Location: Sussman Family Building for Environmental Sciences
Showing results for: All years
All Years
All Years 2023 2022 2021
  • Lecture

    Groundwater-surface water interactions in coastal environments and the impact of hydrogeological changes.

    Date: Sunday, March 19, 2023 Hour: 11:00
    Speaker: Anner Paldor
    Share the event Groundwater-surface water interactions in coastal environments and the impact of hydrogeological changes. on email Add the event Groundwater-surface water interactions in coastal environments and the impact of hydrogeological changes. to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Location: Sussman Family Building for Environmental Sciences
  • Lecture

    TBA

    Date: Sunday, March 12, 2023 Hour: 11:00
    Speaker: Boswell Wing, Colorado
    Share the event TBA on email Add the event TBA to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Location: Sussman Family Building for Environmental Sciences
  • Lecture

    TBA

    Date: Sunday, March 5, 2023
    Speaker: Ann Pearson
    Share the event TBA on email Add the event TBA to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Location: Sussman Family Building for Environmental Sciences
  • Lecture

    TBA

    Date: Sunday, February 26, 2023
    Speaker: Holly Michael
    Share the event TBA on email Add the event TBA to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Location: Sussman Family Building for Environmental Sciences
  • Lecture

    flow, deformation and, reaction in porous media: the Coupling of Flow and Elastic Expansion in Porous Media

    Date: Sunday, February 19, 2023 Hour: 11:00
    Speaker: Yaniv Edery
    Share the event flow, deformation and, reaction in porous media: the Coupling of Flow and Elastic Expansion in Porous Media on email Add the event flow, deformation and, reaction in porous media: the Coupling of Flow and Elastic Expansion in Porous Media to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Location: Sussman Family Building for Environmental Sciences
  • Lecture

    Forecasting surface weather and storm tracks at one-month leads: role of the stratosphere and the Madden Julian Oscillation

    Date: Sunday, February 5, 2023 Hour: 11:00
    Speaker: Chaim Garfinkel, The Hebrew University of Jerusalem
    Abstract: The traditional approach to weather forecasting on one- to two-week timescales utilizes weather forecasting models, but on timescales longer than two weeks, the value of determinis read more »Continue read abstract
    Abstract: The traditional approach to weather forecasting on one- to two-week timescales utilizes weather forecasting models, but on timescales longer than two weeks, the value of deterministic (or ensemble-based probabilistic) forecasts weakens. This is due to the presence of chaotic variability in the atmosphere. Yet certain modes of variability in the climate system have timescales longer than this two-week threshold, and the key to longer-scale prediction is to take advantage of these modes when they open up windows of opportunity. By understanding the impacts of these modes of variability on surface weather, the potential for improved forecasts on a monthly timescale can be demonstrated and eventually realized.  Two such classes of modes of variability are stratospheric variability (both in the tropical and polar stratosphere) and tropical tropospheric variability (e.g. the Madden-Julian Oscillation and El Nino). For example, both polar stratospheric sudden warmings and the Madden-Julian Oscillation have been shown to influence European and Mediterranean weather, but it is unclear (1) what mechanism(s) underlie these connections, (2) how far in advance the impacts can be predicted, (3) what governs the magnitude of the surface impact, and (4) how well models capture these connections. This talk will review progress made towards addressing these issues over the past several years in my group. Close abstractClose abstract
    Share the event Forecasting surface weather and storm tracks at one-month leads: role of the stratosphere and the Madden Julian Oscillation on email Add the event Forecasting surface weather and storm tracks at one-month leads: role of the stratosphere and the Madden Julian Oscillation to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Location: Sussman Family Building for Environmental Sciences
  • Lecture

    Silver mines, the rise of money and the advent of democracy

    Date: Thursday, February 2, 2023 Hour: 14:00
    Speaker: Prof. Francis Albarède, École Normale Supérieure de Lyon, France
    Abstract: Over the last 2½ millenia, the world economy depended on prevailing currencies: the Athenian owl (530- 168 BCE), the Roman denarius (211 BCE-250 AD), the Spanish piece-of-eight ( read more »Continue read abstract
    Abstract: Over the last 2½ millenia, the world economy depended on prevailing currencies: the Athenian owl (530- 168 BCE), the Roman denarius (211 BCE-250 AD), the Spanish piece-of-eight (16th to 18th C), and today the US dollar. These reference monies were accepted everywhere and all, at least in the beginning, were made of silver. What is so special about this metal? Silver is useless and rare, but still abundant enough to match the wealth of nations and of their long-distance trade. Silver ores are associated with rare and recent tectonic environments, the Mediterranean world, notably the periphery of the Aegean Sea and Southern Iberia, and the American cordillera, Peru and Mexico. In contrast, they were markedly scarce in South and East Asia. After the virtual destruction of soils by the Anatolian farmers at the end of the Bronze Age, the Near and Middle East societies depended almost exclusively on the agriculture of Egypt and Mesopotamia. The Late Bronze Age collapse (ca. 1200 BCE) corresponded to the migration of Greek people and resulted in the annihilation of all the empires outside of the flood plains. Silver by weight was nevertheless used to save populations from famine and trade wheat, barley and copper. Military innovations, hoplites and their phalanx, were, with silver mines, the main resources of the Greeks. Mercenaries received their wages in silver, notably through the tributes exacted in silver by the Achaemenid (Persion) kings. By minting silver, the returning Greek mercenaries emerged as strong middle classes . They soon claimed their share of the power, toppled the tyrants, and installed democracy in many poleis from Greece and Southern Italy. Modern economics teaches us that egalitarian distribution of wealth is unfortunately unstable and this case is well illustrated by Syracuse. At the beginning of the common era, the Roman Empire found itself the owner of centuries of silver extracted from Greece and from Iberia. This bullion was used to buy luxury products, frankincense from Arabia, spices and cotton from India, ivory and precious wood from Africa. Leakage of silver towards the Indian Ocean was so strong that coins were quickly debased by copper and by 250 AD most of the silver had been lost. The progressive replacement of silver by a bimetallic system, gold for the rich and bronze for the working class, progressively fractured the society and ushered the brutal Middle Age regimes. Silver famine had finally destroyed the democratic ideal of the Greeks. This is food for thought as disappearing mining resources may severely affect our current vision of societies. Close abstractClose abstract
    Share the event Silver mines, the rise of money and the advent of democracy on email Add the event Silver mines, the rise of money and the advent of democracy to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Location: Sussman Family Building for Environmental Sciences
  • Lecture

    Insolation Forcing and Eastern Mediterranean aridity: Evidence from the Dead Sea and implications for climate projections

    Date: Sunday, January 29, 2023 Hour: 11:00
    Speaker: Yochanan Kushnir, Lamont-Dohert Earth Observatory Columbia University
    Abstract: The Mediterranean region stands out among other subtropical regions in its projected drying response to the global rise in atmospheric greenhouse gas concentrations. This drying t read more »Continue read abstract
    Abstract: The Mediterranean region stands out among other subtropical regions in its projected drying response to the global rise in atmospheric greenhouse gas concentrations. This drying trend has already emerged out of the normal, random climate variability in the sensitive Eastern Mediterranean (EM) region. To better understand the dynamical mechanisms responsible for this regional sensitivity, we turn to past protracted EM drying states during warm geological epochs. A unique view of the historical and pre-historical hydroclimate of the EM-Levant has been gleaned from the continued study of the sedimentary and geochemical record left by the lakes that filled the tectonic basin of the Dead Sea. We revisit the Late Quaternary sediment record retrieved during the 2010-2011 Dead Sea Deep Drilling Project (DSDDP). The sediments clearly indicate that the Levant was drier during past warm interglacials than during the adjacent glacials but nonetheless experienced large variations in the intensity of the regional aridity. During each interglacial, extended thick deposits of salts accumulated at the Lake bottom, during millennia of significant regional aridity and severely reduced Mediterranean rains. These dry states were interrupted by extended wet intervals, fed by rains that were supplied by a blend of tropical and Mediterranean moisture. To understand the underlying causes of the EM-Levant interglacial hydroclimate variations, we put the Dead Sea record in the context of the Northern Hemisphere orbital insolation variations and their impact on the global climate system. We show that the changes in EM hydroclimate portrayed by the DSDDP record during the interglacials, are entirely consistent with the response of the North Atlantic Ocean and the overlying atmosphere and surrounding land areas to the changes in the latitudinal insolation gradient, as determined by climate models and evident by surface temperature proxies. This perspective provides new information regarding the dynamical processes responsible for the ongoing, greenhouse gas forced, EM drying. Close abstractClose abstract
    Share the event Insolation Forcing and Eastern Mediterranean aridity: Evidence from the Dead Sea and implications for climate projections on email Add the event Insolation Forcing and Eastern Mediterranean aridity: Evidence from the Dead Sea and implications for climate projections to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Location: Sussman Family Building for Environmental Sciences
  • Lecture

    Persistent and concurrent weather extremes in present and future climates

    Date: Sunday, January 22, 2023 Hour: 11:00
    Speaker: Kai Kornhuber, Columbia University
    Abstract: Recent severe summertime weather extremes in the Northern hemisphere extratropics such as the extraordinary 2021 North American Heatwave and the record-breaking floods in central read more »Continue read abstract
    Abstract: Recent severe summertime weather extremes in the Northern hemisphere extratropics such as the extraordinary 2021 North American Heatwave and the record-breaking floods in central Europe were in part driven by persistent circulation patterns in the tropospheric Jetstream. To what degree such circulation patterns will modulate extreme weather risk in a warming world is still uncertain and remains a highly debated topic in climate science. I will present results from recent studies that investigate physics of extraordinary extremes, future changes in weather persistence diagnosed by a feature tracking algorithm and future risks from concurrent extremes and associated impacts on crop production based on latest GGCMI-runs. A special emphasis will be placed on benchmarking the skill of CMIP5 and CMIP6 models to reproduce atmosphere dynamical mechanisms and associated extreme weather against reanalysis data short bio: Kai Kornhuber is an adjunct Associate Research Scientist at the Lamont-Doherty Earth Observatory, Columbia University in New York and a Senior Fellow on Climate Risks at the German Council on Foreign Relations. His research is concerned with physical drivers of extreme weather and climate events and associated societal impacts and risks under current and future climatic conditions. He is Founding Member of the EarthNetwork on Sustainable and Resilient Living in an Era of Increasing Disasters at Columbia’s Climate School, Co-Chair of the Compound Events Working Group at Risk-Kan, Steering Committee member of the HiWeather Project and a Co- Pi of the Project PERSEVERE within the BMBF Consortium. Close abstractClose abstract
    Share the event Persistent and concurrent weather extremes in present and future climates on email Add the event Persistent and concurrent weather extremes in present and future climates to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Location: Sussman Family Building for Environmental Sciences
  • Lecture

    TBA

    Date: Sunday, January 15, 2023 Hour: 11:00
    Speaker: Adi Torfstein, Hebrew University of Jerusalem
    Share the event TBA on email Add the event TBA to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Location: Sussman Family Building for Environmental Sciences
  • Lecture

    TBA

    Date: Sunday, January 8, 2023 Hour: 11:00
    Speaker: Dan Rabinowitz, Tel Aviv University
    Share the event TBA on email Add the event TBA to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Location: Sussman Family Building for Environmental Sciences
  • Lecture

    TBA

    Date: Sunday, January 1, 2023 Hour: 11:00
    Speaker: Yishai Weinstein, Bar Ilan Univrsity
    Share the event TBA on email Add the event TBA to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Location: Sussman Family Building for Environmental Sciences
  • Lecture

    Lightning, Biology, and Evolution

    Date: Sunday, December 25, 2022 Hour: 11:00
    Speaker: Colin Price, Tel Aviv University
    Abstract: Most electrical activity in vertebrates and invertebrates occurs at extremely low frequencies (ELF), with characteristic maxima below 50 Hz. The origin of these frequency maxima i read more »Continue read abstract
    Abstract: Most electrical activity in vertebrates and invertebrates occurs at extremely low frequencies (ELF), with characteristic maxima below 50 Hz. The origin of these frequency maxima is unknown and remains a mystery. We propose that over billions of years during the evolutionary history of living organisms on Earth, the natural electromagnetic resonant frequencies in the atmosphere, continuously generated by global lightning activity, provided the background electric fields for the development of cellular electrical activity. In some animals, the electrical spectrum is difficult to differentiate from the natural background atmospheric electric field produced by lightning. In this talk I will present evidence for the link between the natural ELF fields and those found in many living organisms, including humans.  Furthermore, recent experiments show links between the ELF fields and photosynthesis in plants. Close abstractClose abstract
    Share the event Lightning, Biology, and Evolution on email Add the event Lightning, Biology, and Evolution to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Location: Sussman Family Building for Environmental Sciences
  • Lecture

    Origin of compact exoplanetary systems

    Date: Sunday, December 4, 2022 Hour: 15:00
    Speaker: Raluca Rufu SwRI, Boulder
    Abstract: One of the most surprising discoveries in exoplanet science has been the existence of compact systems of Earth to super-Earth sized planets. These multi-planet systems have nearly read more »Continue read abstract
    Abstract: One of the most surprising discoveries in exoplanet science has been the existence of compact systems of Earth to super-Earth sized planets. These multi-planet systems have nearly circular, coplanar orbits located at distances of only ∼ 0.01 − 0.1 AU, a region devoid of planets in our Solar System. Although compact systems comprise a large fraction of known exoplanetary systems, their origin remains debated. Common to all prior models of compact system origin is the assumption that infall to the stellar disk ends before planets form. However, there is growing observational, theoretical, and meteoritical evidence of the early growth of mm-sized “pebbles” during the infall phase. We propose that accretion of compact systems occurs during stellar infall. As a cloud core collapses, solids are gradually accumulated in the disk, producing favorable conditions for the formation and survival of close-in planets. A key feature of this model is that the reduced gas-to-solids ratio in the planet accretion region can allow for the formation and survival of compact systems, even with Type-I migration. Accretion within infall-supplied disks has been studied in the context of gas planet satellite origin. Formation models predict that the total mass of the satellite system during this evolution maintains a nearly constant mass ratio ∼10^−4 compared to the host planet’s mass. The maximum mass ratio of compact exoplanetary systems compared to the stellar mass are similar to those of the giant satellite system, suggesting that accretion of compact systems may be similar to regular satellite formation. Close abstractClose abstract
    Share the event Origin of compact exoplanetary systems on email Add the event Origin of compact exoplanetary systems to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Location: Sussman Family Building for Environmental Sciences
  • Lecture

    TBA - M. Magaritz Memorial Lecture: Climate Intervention

    Date: Sunday, November 20, 2022 Hour: 11:00
    Speaker: David Fahey
    Share the event TBA - M. Magaritz Memorial Lecture: Climate Intervention on email Add the event TBA - M. Magaritz Memorial Lecture: Climate Intervention to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Location: Sussman Family Building for Environmental Sciences
  • Lecture

    Targeted observations of transient luminous events from the International Space Station during the ILAN-ES campaign

    Date: Sunday, November 13, 2022 Hour: 11:00
    Speaker: Yoav Yair
    Share the event Targeted observations of transient luminous events from the International Space Station during the ILAN-ES campaign on email Add the event Targeted observations of transient luminous events from the International Space Station during the ILAN-ES campaign to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Location: Sussman Family Building for Environmental Sciences
  • Lecture

    Climate change challenge and innovative approaches - from batteries to agriculture - towards a more sustainable future

    Date: Tuesday, November 8, 2022 Hour: 09:30
    Speaker: Steven Chu, Stanford University
    Share the event Climate change challenge and innovative approaches - from batteries to agriculture - towards a more sustainable future on email Add the event Climate change challenge and innovative approaches - from batteries to agriculture - towards a more sustainable future to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Location: Dolfi and Lola Ebner Auditorium
  • InterPore Israel Chapter

    Date: Sunday, September 18, 2022 Hour: 09:30
    Share the event InterPore Israel Chapter on email Add the event InterPore Israel Chapter to calendar
    Zoom meeting on https://www.weizmann.ac.il/EPS/sites/EPS/files/uploads/program-web_1_0.pdf
  • Lecture

    Impacts of the June 2021 Heat Dome on Pacific Northwest (USA) Trees and Forests

    Date: Sunday, June 19, 2022 Hour: 11:00
    Speaker: Chris Still, Oregon State University
    Abstract: Most of the Pacific Northwest (PNW, USA) and British Columbia experienced extraordinarily high air temperatures during an extreme heat wave event (“heat dome”) in late June o read more »Continue read abstract
    Abstract: Most of the Pacific Northwest (PNW, USA) and British Columbia experienced extraordinarily high air temperatures during an extreme heat wave event (“heat dome”) in late June of 2021. In many locations, alltime record high air temperatures (Tair) exceeding 40-45 °C were observed. In this talk I will present evidence of the widespread impacts of this extreme heat event. These impacts include foliar damage observed in many locations of this region, along with some tree mortality. Additionally, I will present data from dendrometers and eddy covariance towers in contrasting forest types highlighting the impacts on tree growth and ecosystem-atmosphere CO2, H2O, and energy fluxes. Better understanding the environmental drivers, biophysical and physiological mechanisms, and ecological consequences of heat damage incurred by forests is of broad relevance and societal importance. Close abstractClose abstract
    Share the event Impacts of the June 2021 Heat Dome on Pacific Northwest (USA) Trees and Forests on email Add the event Impacts of the June 2021 Heat Dome on Pacific Northwest (USA) Trees and Forests to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Location: Sussman Family Building for Environmental Sciences
  • Lecture

    Biogeochemical cycling in subsurface systems

    Date: Sunday, June 12, 2022 Hour: 11:00
    Speaker: Dr. Maya Engel, SLAC National Lab Stanford University
    Abstract: Subsurface systems, such as alluvial aquifers and soils, store and govern the quality of groundwater by sustaining a unique balance of biogeochemical and hydrological processes. Th read more »Continue read abstract
    Abstract: Subsurface systems, such as alluvial aquifers and soils, store and govern the quality of groundwater by sustaining a unique balance of biogeochemical and hydrological processes. The complex characteristics of subsurface systems are demonstrated in both spatial and compositional sediment heterogeneities that ultimately control the rate and extent of elemental cycling. Different redox environments commonly form within the subsurface and may largely influence these cycles. Heavy metals, occurring naturally (geogenic) or as anthropogenic contaminants, are particularly sensitive to varying redox conditions, even if they are not directly redox active. In this seminar, I will show how sediment hotspots and interfaces influence elemental cycling, contaminant attenuation, and groundwater quality. I will present examples of how an alluvial aquifer system exhibiting redox heterogeneities may influence heavy metal mobility by preferential retention in fine-grained sediment lenses embedded within the coarse aquifer. Several mechanisms contribute to the retention in fine-grained sediments, and we also observe a significant impact of nitrate-rich conditions on the extent and phases of metal retention. Further, I will share our findings on the dynamic and unique composition of iron-rich colloids, detected in reducing zones of a floodplain subsurface. Our results demonstrate the presence of partially oxidized iron rich colloids in otherwise reducing conditions, thanks to a protective organic-silicon coating. The lifecycle and composition of these colloids may have direct effects on element cycling as they may serve as vectors for the transport of nutrients and organic matter into groundwater and surface water recipients. Lastly, I will present my future research visions, in a lab devoted to the study of biogeochemical heterogeneity and coupled elemental cycling under dynamic conditions. Close abstractClose abstract
    Share the event Biogeochemical cycling in subsurface systems on email Add the event Biogeochemical cycling in subsurface systems to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Location: Sussman Family Building for Environmental Sciences
  • Lecture

    LESSONS FROM THE DEAD SEA, THE CLOSEST MODERN ANALOG FOR DEEP EVAPORITIC BASINS

    Date: Sunday, May 29, 2022 Hour: 11:00
    Speaker: Nadav Lensky, Geological survey of Israel
    Abstract: Thick halite sequences are common in the Earth’s geologic record; they were accumulated in deep perennial hypersaline water bodies, saturated to halite and subjected to negative read more »Continue read abstract
    Abstract: Thick halite sequences are common in the Earth’s geologic record; they were accumulated in deep perennial hypersaline water bodies, saturated to halite and subjected to negative water balance. For decades, evaporites research gained insights from exploring modern shallow hypersaline environments, including the relations between the hydroclimatic forcing and the deposited halite layers. However, there is a knowledge gap in understanding limnological controls on accreted halite sequences in deep water bodies. Such water bodies rarely exist today on Earth, but were common through Earth geological history. The Dead Sea is currently the closest and probably the only modern analog for such environments. Recently, based on direct field measurements, laboratory experiments, direct numerical simulations, and sedimentological investigation, we have shown that there are fundamental differences between deposition at deep basins versus shallow basins, specifically in the seasonal to multi-annual scales and variations of halite solubility with depth. We have found that during the dry summer the epilimnion is warmer, saltier and undersaturated to halite, and that double diffusion flux delivers dissolved salt from the epilimnion into the hypolimnion, resulting in the continuously supersaturated hypolimnion and seasonally undersaturated epilimnion. Thus the stratified structure of the lake’s water column results in focusing of halite deposits into the deep parts of the basin and thinned deposits, or entirely dissolved, in the marginal parts. We further explore the role of laterally variable hydroclimatic conditions to the spatiotemporal dynamics of evaporitic deposits in a deep hypersaline waterbody. We focus on the role of diluted buoyant plume, overlaying part of the Dead Sea surface that laterally spreads from freshwater inflow. The lateral surface salinity variations results in lateral variations in evaporation, double diffusion fluxes, and hence evaporitic layer thickness. These can contribute to the study of the depositional environments of halite units throughout the geological record, following the concept of “the present as key to the past”. At the end of the talk, I will share some management ideas regarding the future of the Dead Sea. Close abstractClose abstract
    Share the event LESSONS FROM THE DEAD SEA, THE CLOSEST MODERN ANALOG FOR DEEP EVAPORITIC BASINS on email Add the event LESSONS FROM THE DEAD SEA, THE CLOSEST MODERN ANALOG FOR DEEP EVAPORITIC BASINS to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Zoom meeting on https://weizmann.zoom.us/j/7621438333?pwd=c0lpdlQzYSthellXWG9rZnM0ZDRFZz09
  • Lecture

    TBA

    Date: Tuesday, May 17, 2022 Hour: 11:00
    Speaker: Avishai Abu, The Hebrew University of Jerusalem
    Share the event TBA on email Add the event TBA to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Zoom meeting on https://weizmann.zoom.us/j/7621438333?pwd=c0lpdlQzYSthellXWG9rZnM0ZDRFZz09
  • Lecture

    TBA

    Date: Sunday, May 8, 2022 Hour: 11:00
    Speaker: Nili Harnik, Tel Aviv University
    Share the event TBA on email Add the event TBA to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Zoom meeting on https://weizmann.zoom.us/j/7621438333?pwd=c0lpdlQzYSthellXWG9rZnM0ZDRFZz09
  • Lecture

    TBA

    Date: Tuesday, May 3, 2022 Hour: 11:00
    Speaker: Mathew Henry
    Share the event TBA on email Add the event TBA to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Zoom meeting on https://weizmann.zoom.us/j/7621438333?pwd=c0lpdlQzYSthellXWG9rZnM0ZDRFZz09
  • Lecture

    TBA

    Date: Tuesday, April 26, 2022 Hour: 11:00
    Speaker: Georg Wohlfahrt, University of Innsbruck Department of Ecology
    Share the event TBA on email Add the event TBA to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Zoom meeting on https://weizmann.zoom.us/j/7621438333?pwd=c0lpdlQzYSthellXWG9rZnM0ZDRFZz09
  • Symposium on Geophysical Fluid Dynamics 5-6 April 2022

    Date: Tuesday, April 5, 2022
    Homepage of event Symposium on Geophysical Fluid Dynamics 5-6 April 2022 Share the event Symposium on Geophysical Fluid Dynamics 5-6 April 2022 on email Add the event Symposium on Geophysical Fluid Dynamics 5-6 April 2022 to calendar
  • Lecture

    Decadal Climate Predictions Using Sequential Learning Algorithms

    Date: Sunday, March 27, 2022 Hour: 11:00
    Speaker: Golan Bel, Ben-Gurion University of the Negev
    Abstract: Decadal Climate Predictions Using Sequential Learning Algorithms Ensembles of climate models are commonly used to improve climate predictions and assess the uncertainties associa read more »Continue read abstract
    Abstract: Decadal Climate Predictions Using Sequential Learning Algorithms Ensembles of climate models are commonly used to improve climate predictions and assess the uncertainties associated with them. Weighting the models according to their performances holds the promise of further improving their predictions. Using an ensemble of climate model simulations from the CMIP5 decadal experiments, we quantified the total uncertainty associated with these predictions and the relative importance of model and internal uncertainties. Sequential learning algorithms (SLAs) were used to reduce the forecast errors and reduce the model uncertainties. The reliability of the SLA predictions was also tested, and the advantages and limitations of the different performance measures are discussed. The spatial distribution of the SLAs performance showed that they are skillful and better than the other forecasting methods over large continuous regions. This finding suggests that, despite the fact that each of the ensemble models is not skillful, the models were able to capture some physical processes that resulted in deviations from the climatology and that the SLAs enabled the extraction of this additional information. If time permits I will also present a method for estimating the uncertainties associated with ensemble predictions and demonstrate the resulting improved reliability. References: 1. Improvement of climate predictions and reduction of their uncertainties using learning algorithms, Atmospheric Chemistry and Physics 15, 8631-8641 (2015). 2. Decadal climate predictions using sequential learning algorithms, Journal of Climate 29, 3787-3809 (2016). 3. The contribution of internal and model variabilities to the uncertainty in CMIP5 decadal climate predictions, Climate Dynamics 49, 3221 (2017). 4. Quantifying the uncertainties in an ensemble of decadal climate predictions. Journal of Geophysical Research: Atmospheres 122, 13,191–13,200 (2017). 5. Learning algorithms allow for improved reliability and accuracy of global mean surface temperature projections. Nature Communications 11, 451 (2020). Close abstractClose abstract
    Share the event Decadal Climate Predictions Using Sequential Learning Algorithms on email Add the event Decadal Climate Predictions Using Sequential Learning Algorithms to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Zoom meeting on https://weizmann.zoom.us/j/7621438333?pwd=c0lpdlQzYSthellXWG9rZnM0ZDRFZz09
  • Lecture

    Four disruptive technologies that are revolutionizing sensing of the oceans

    Date: Sunday, March 20, 2022 Hour: 11:00
    Speaker: Emmanuel Boss
    Abstract: The maker movement (cheap electronics + sharing), automated microscopy, autonomous platforms and small footprint satellites have been revolutionizing oceanography, opening a varie read more »Continue read abstract
    Abstract: The maker movement (cheap electronics + sharing), automated microscopy, autonomous platforms and small footprint satellites have been revolutionizing oceanography, opening a variety of new avenues for research and requiring a different education model. In this talk I will summarize a few activities my lab has been involved in that are associated with these disruptive technologies and why I am very optimistic for the future of our field in the coming years. Close abstractClose abstract
    Share the event Four disruptive technologies that are revolutionizing sensing of the oceans on email Add the event Four disruptive technologies that are revolutionizing sensing of the oceans to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Zoom meeting on https://weizmann.zoom.us/j/7621438333?pwd=c0lpdlQzYSthellXWG9rZnM0ZDRFZz09
  • Lecture

    Stratosphere-troposphere coupling: from wave-mean flow feedbacks to sub-seasonal predictability

    Date: Tuesday, March 8, 2022 Hour: 11:00
    Speaker: Thomas Birner
    Abstract: It is by now well established that certain stratospheric flow configurations may alter tropospheric dynamical variability. Such flow configurations include the aftermath of sudden read more »Continue read abstract
    Abstract: It is by now well established that certain stratospheric flow configurations may alter tropospheric dynamical variability. Such flow configurations include the aftermath of sudden stratospheric warming events (SSWs) or strong polar vortex events (SPVs). Although the detailed mechanisms behind this stratosphere-troposphere coupling remain elusive, most aspects of it are well-known. For example, the coupling involves feedbacks between upward propagating planetary waves of tropospheric origin and the mean flow, the tropospheric response involves synoptic-scale eddy feedbacks, SSWs tend to project onto negative anomalies of the Arctic and North-Atlantic Oscillation (AO, NAO), whereas SPVs tend to project onto positive anomalies of the AO and NAO. Here I will highlight some recent results on 1) the potential role of a planetary wave source near the tropopause in troposphere-stratosphere coupling, 2) the stratospheric influence on the evolution of baroclinically unstable waves during their non-linear decay phase, 3) the improved quantification of the stratospheric modulation of AO extremes from extended-range ensemble forecasts. Close abstractClose abstract
    Share the event Stratosphere-troposphere coupling: from wave-mean flow feedbacks to sub-seasonal predictability on email Add the event Stratosphere-troposphere coupling: from wave-mean flow feedbacks to sub-seasonal predictability to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Zoom meeting on https://weizmann.zoom.us/j/7621438333?pwd=c0lpdlQzYSthellXWG9rZnM0ZDRFZz09
  • Lecture

    Sediment geochemistry in large lakes, and what it can tell us about the ancient oceans

    Date: Sunday, February 27, 2022 Hour: 11:00
    Speaker: Sergei Katsev, University of Minnesota, Duluth
    Abstract: The Great Lakes of the Earth are freshwater seas, and many of the geochemical processes that take place in their bottom sediments parallel those that happen in marine environments. read more »Continue read abstract
    Abstract: The Great Lakes of the Earth are freshwater seas, and many of the geochemical processes that take place in their bottom sediments parallel those that happen in marine environments. The conditions, however, are different enough to significantly modify the geochemical cycles of key elements. By analyzing those differences, we can not only understand the functioning of the planet's largest freshwater ecosystems, but can also gain insight into the elemental cycling (C, N, P, S...) in the oceans during the past geological epochs. Close abstractClose abstract
    Share the event Sediment geochemistry in large lakes, and what it can tell us about the ancient oceans on email Add the event Sediment geochemistry in large lakes, and what it can tell us about the ancient oceans to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Zoom meeting on https://weizmann.zoom.us/j/7621438333?pwd=c0lpdlQzYSthellXWG9rZnM0ZDRFZz09
  • Lecture

    Reduced Rainfall in Future Heavy Precipitation Events Related to Contracted Rain Area Despite Increased Rain Rate

    Date: Sunday, February 20, 2022 Hour: 11:00
    Speaker: Moshe (Koko) Armon, The Hebrew University
    Share the event Reduced Rainfall in Future Heavy Precipitation Events Related to Contracted Rain Area Despite Increased Rain Rate on email Add the event Reduced Rainfall in Future Heavy Precipitation Events Related to Contracted Rain Area Despite Increased Rain Rate to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Zoom meeting on https://weizmann.zoom.us/j/7621438333?pwd=c0lpdlQzYSthellXWG9rZnM0ZDRFZz09
  • Lecture

    Distributed views across media: From space to ocean-depths

    Date: Sunday, February 13, 2022 Hour: 11:00
    Speaker: Yoav Schechner , Technion
    Abstract: By economy of scale, imaging sensors can now be deployed densely and operated in a coordinated manner at large numbers in space, air, underwater and on the ground. Such distributed read more »Continue read abstract
    Abstract: By economy of scale, imaging sensors can now be deployed densely and operated in a coordinated manner at large numbers in space, air, underwater and on the ground. Such distributed imaging systems enable multi-view setups across heterogeneous media of importance to geoscience. These create new observation modes. One outcome is 4D volumetric spatiotemporal recovery of scatterers in the atmosphere, specifically cloud content (the core of the CloudCT space mission). This is in addition to computed tomography of underwater sediment suspension and atmospheric turbulence distributions. We describe several such systems - demonstrated in the field, including both distributed imaging and the basis of the algorithms to analyze the data. Close abstractClose abstract
    Share the event Distributed views across media: From space to ocean-depths on email Add the event Distributed views across media: From space to ocean-depths to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Zoom meeting on https://weizmann.zoom.us/j/7621438333?pwd=c0lpdlQzYSthellXWG9rZnM0ZDRFZz09
  • Lecture

    Amplified warming of extreme temperatures over tropical land

    Date: Tuesday, February 8, 2022 Hour: 11:00
    Speaker: Michael P. Byrne, Lecturer in Earth & Environmental Sciences – University of St Andrews Marie Skłodowska-Curie Research Fellow – University of Oxford
    Abstract: Extreme temperatures have warmed substantially over recent decades and are expected to continue warming in response to future climate change. Warming of extreme temperatures is pro read more »Continue read abstract
    Abstract: Extreme temperatures have warmed substantially over recent decades and are expected to continue warming in response to future climate change. Warming of extreme temperatures is projected to be amplified over land, with severe implications for human health, wildfire risk and food production. Using simulations from coupled climate models, I show that hot days over tropical land warm substantially more than the average day. For example, warming of the hottest 5% of land days is a factor of 1.2 larger than the time-mean warming averaged across models. The climate-change response of extreme temperatures over tropical land is interpreted using a theory based on convective coupling and the weak temperature gradient approximation. According to the theory, warming is amplified for hot land days because those days are dry: this is termed the “drier get hotter” mechanism. Changes in near-surface relative humidity further increase tropical land warming, with decreases in land relative humidity particularly important. The theory advances physical understanding of the tropical climate and highlights climatological land-surface dryness as a key factor determining how extreme temperatures respond to climate change. Close abstractClose abstract
    Share the event Amplified warming of extreme temperatures over tropical land on email Add the event Amplified warming of extreme temperatures over tropical land to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Zoom meeting on https://weizmann.zoom.us/j/7621438333?pwd=c0lpdlQzYSthellXWG9rZnM0ZDRFZz09
  • Lecture

    M. Magaritz Memorial Lecture: The storyline approach to the construction of useable climate information at the local scale.

    Date: Tuesday, February 1, 2022 Hour: 11:00
    Speaker: Ted Shepherd , Department of Meteorology University of Reading
    Share the event M. Magaritz Memorial Lecture: The storyline approach to the construction of useable climate information at the local scale. on email Add the event M. Magaritz Memorial Lecture: The storyline approach to the construction of useable climate information at the local scale. to calendar
    Contact: dalia.madhala@weizmann.ac.il
  • Lecture

    Stormy weather: past and future hazards from a weather system perspective

    Date: Sunday, January 23, 2022 Hour: 11:00
    Speaker: Jennifer Catto , University of Exeter
    Abstract: Natural hazards such as extreme wind, rainfall and ocean waves can have severe impacts on built and natural environments, contributing to the occurrence of disastrous events in som read more »Continue read abstract
    Abstract: Natural hazards such as extreme wind, rainfall and ocean waves can have severe impacts on built and natural environments, contributing to the occurrence of disastrous events in some cases. These hazards are often caused by weather systems such as cyclones, fronts and thunderstorms. We have used a number of objective techniques to identify these weather system types, in order to understand the links between the weather systems and hazards in observations. We have then used this understanding to evaluate climate models and to better understand the response of the weather systems and the high impact hazards to a warmer climate. Close abstractClose abstract
    Share the event Stormy weather: past and future hazards from a weather system perspective on email Add the event Stormy weather: past and future hazards from a weather system perspective to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Zoom meeting on https://weizmann.zoom.us/j/7621438333?pwd=c0lpdlQzYSthellXWG9rZnM0ZDRFZz09
  • Lecture

    Direct Imaging of Planet Formation

    Date: Sunday, January 16, 2022 Hour: 11:00
    Speaker: Sivan Ginzburg , California Institute of Technology
    Abstract: The vast majority of detected planets are observed indirectly, using their small perturbation on the light emitted by the host stars. In recent years, however, the world's largest read more »Continue read abstract
    Abstract: The vast majority of detected planets are observed indirectly, using their small perturbation on the light emitted by the host stars. In recent years, however, the world's largest ground based telescopes have succeeded in directly imaging the light coming from some planets themselves. I will present our comprehensive theory for the mass, luminosity, and spin of gas giant planets during their final stages of formation - when they simultaneously contract and accrete gas from a disk. I will apply this theory to the luminosity and spectrum obtained by the novel direct-imaging technique, highlighting the recently discovered PDS 70 system, where two planets were directly observed during formation for the first time. Close abstractClose abstract
    Share the event Direct Imaging of Planet Formation on email Add the event Direct Imaging of Planet Formation to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Zoom meeting on https://weizmann.zoom.us/j/7621438333?pwd=c0lpdlQzYSthellXWG9rZnM0ZDRFZz09
  • Lecture

    Three arguments for increasing weather persistence in boreal summer – and why we should care.

    Date: Tuesday, January 11, 2022 Hour: 11:00
    Speaker: Dim Coumou
    Abstract: Persistent summer weather can have significant socio-economic impacts. Prolonged hot-dry conditions may lead to crop yield losses, while consecutive rainy days (e.g. associated wit read more »Continue read abstract
    Abstract: Persistent summer weather can have significant socio-economic impacts. Prolonged hot-dry conditions may lead to crop yield losses, while consecutive rainy days (e.g. associated with stalling cyclones) can cause flooding. Both observational and climate model analyses indicate that global warming weakens the hemispheric-wide circulation in boreal summer, yet it is still largely unclear what this weakening implies for the persistence of regional weather conditions. Here, I present multiple lines of evidence supporting that weather persistence in summer has been increasing over the last 40 years over most mid-latitude regions and will continue to do so under future global warming. Methodologically, we use a persistence metric rooted in dynamical systems theory, which does not require partitioning instantaneous atmospheric states in an arbitrary number of clusters. This makes it ideally suited to detect subtle changes in atmospheric motions including weather-persistence. I discuss relevant recent literature and argue that there is now substantial evidence for increasing weather persistence over mid-latitude regions, providing enhanced extreme weather risks for society. Close abstractClose abstract
    Share the event Three arguments for increasing weather persistence in boreal summer – and why we should care. on email Add the event Three arguments for increasing weather persistence in boreal summer – and why we should care. to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Zoom meeting on https://weizmann.zoom.us/j/7621438333?pwd=c0lpdlQzYSthellXWG9rZnM0ZDRFZz09
  • Lecture

    The impact of friction on the stability of ice sheets

    Date: Sunday, December 26, 2021 Hour: 11:00
    Speaker: Roiy Sayag
    Abstract: Ice sheets can dramatically impact the state of climate. This is due to their capacity to modify the planetary energy balance through variations in the ice cover and mass. A major read more »Continue read abstract
    Abstract: Ice sheets can dramatically impact the state of climate. This is due to their capacity to modify the planetary energy balance through variations in the ice cover and mass. A major question is how rapidly could such modification occur and to what extent ? This question can be addressed by investigating phenomena that involve relatively large mass flux of ice into the ocean, such as ice calving and rifting, ice streams, and melting. Many of these processes involve interactions between the ice sheet and the underlying bedrock or ocean. We model ice sheets as buoyancy-driven flows of nonlinear (non Newtonian) fluid and explore the resulted flow dynamics and stability due to different friction conditions along the base of the ice. I will show results from scaled laboratory experiments and theoretical modelling of several flows under different friction conditions that evolve patterns reminiscent to those that emerge in glacier ice flows. Specifically, the basal friction that we consider ranges from no-slip conditions, in which radially symmetric flows are stable, to free-slip conditions, in which such flows are unstable, developing patterns reminiscent to ice rifts and ice bergs. Under mixed conditions of friction, an initially radially symmetric flow can be either stable, or develop patterns reminiscent to ice streams. Our insights may have implications to predicting ice flow on Earth and possibly on other planetary objects. Close abstractClose abstract
    Share the event The impact of friction on the stability of ice sheets on email Add the event The impact of friction on the stability of ice sheets to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Zoom meeting on https://weizmann.zoom.us/j/7621438333?pwd=c0lpdlQzYSthellXWG9rZnM0ZDRFZz09
  • Lecture

    Lessons from the past: Climate variability in the Levantine corridor during the Pliocene-Pleistocene transition

    Date: Sunday, December 19, 2021 Hour: 11:00
    Speaker: Nicolas Waldman
    Abstract: The study of past warm climates with high atmospheric CO2 concentrations provides important tools for understanding present trends and developing mitigation strategies for future s read more »Continue read abstract
    Abstract: The study of past warm climates with high atmospheric CO2 concentrations provides important tools for understanding present trends and developing mitigation strategies for future scenarios. The Pliocene is the last long lasting warm interval characterized by similar global climate circulation patterns and continental settings as today. Reconstructing Pliocene climate change from well-dated geological archives provides valuable insights into the climate forcing and pathways that modulated the transfer of heat and humidity and disentangle regional impacts without anthropogenic influence. To address this challenge, the current presentation shows initial results from a comprehensive study that amalgamates high-resolution multi-proxy analyses from both marine and lacustrine records from the Levant region aiming to provide an important reference for future climate and environment change scenarios under high atmospheric CO2 concentrations. Close abstractClose abstract
    Share the event Lessons from the past: Climate variability in the Levantine corridor during the Pliocene-Pleistocene transition on email Add the event Lessons from the past: Climate variability in the Levantine corridor during the Pliocene-Pleistocene transition to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Zoom meeting on https://weizmann.zoom.us/j/7621438333?pwd=c0lpdlQzYSthellXWG9rZnM0ZDRFZz09
  • Lecture

    Transient response of the tropical rain belt to volcanic eruptions

    Date: Sunday, December 5, 2021 Hour: 11:00
    Speaker: Ori Adam
    Share the event Transient response of the tropical rain belt to volcanic eruptions on email Add the event Transient response of the tropical rain belt to volcanic eruptions to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Zoom meeting on https://weizmann.zoom.us/j/7621438333?pwd=c0lpdlQzYSthellXWG9rZnM0ZDRFZz09
  • Lecture

    TBA

    Date: Sunday, November 21, 2021 Hour: 11:00
    Speaker: Raluca Rufu
    Share the event TBA on email Add the event TBA to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Zoom meeting on https://weizmann.zoom.us/j/7621438333?pwd=c0lpdlQzYSthellXWG9rZnM0ZDRFZz09
  • Lecture

    A Simple Model For Interpreting Temperature Variability And Its Higher-Order Changes

    Date: Sunday, November 14, 2021 Hour: 11:00
    Speaker: Talia Tamarin
    Share the event A Simple Model For Interpreting Temperature Variability And Its Higher-Order Changes on email Add the event A Simple Model For Interpreting Temperature Variability And Its Higher-Order Changes to calendar
    Contact: dalia.madhala@weizmann.ac.il
  • Lecture

    On the tropospheric response to transient stratospheric momentum torques

    Date: Sunday, November 7, 2021 Hour: 11:00
    Speaker: Idan White
    Share the event On the tropospheric response to transient stratospheric momentum torques on email Add the event On the tropospheric response to transient stratospheric momentum torques to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Zoom meeting on https://weizmann.zoom.us/j/7621438333?pwd=c0lpdlQzYSthellXWG9rZnM0ZDRFZz09
  • Lecture

    Promenades through Nobels' landscapes: From disorder & fluctuations to organization in Earth’s climate and other complex systems

    Date: Sunday, October 31, 2021 Hour: 11:00
    Speaker: Michael David Chekroun, Department of Earth and Planetary Sciences Weizmann Institute of Science
    Share the event Promenades through Nobels' landscapes: From disorder & fluctuations to organization in Earth’s climate and other complex systems on email Add the event Promenades through Nobels' landscapes: From disorder & fluctuations to organization in Earth’s climate and other complex systems to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Zoom meeting on https://weizmann.zoom.us/j/7621438333?pwd=c0lpdlQzYSthellXWG9rZnM0ZDRFZz09
  • Lecture

    TBA

    Date: Sunday, October 17, 2021 Hour: 11:00
    Speaker: Yossi Ashkenazy, Department of Solar Energy & Environmental Physics The Jacob Blaustein Institutes for Desert Research Ben-Gurion University of the Negev
    Share the event TBA on email Add the event TBA to calendar
    Contact: dalia.madhala@weizmann.ac.il
  • Lecture

    Halite deposition in the Dead Sea: Direct observations and lessons for thick halite sequences in the geological record

    Date: Tuesday, July 6, 2021 Hour: 10:00
    Speaker: Ido Sirota , Institute of Earth Sciences The Hebrew University of Jerusalem
    Abstract: Layered halite sequences were deposited in deep hypersaline basins throughout the geological record. These sequences are of research interest for hydrocarbon extraction, mineral ex read more »Continue read abstract
    Abstract: Layered halite sequences were deposited in deep hypersaline basins throughout the geological record. These sequences are of research interest for hydrocarbon extraction, mineral exploration, tectonics and structural geology and paleoclimate research. Modern analogs and the processes leading to deposition of thick halite sequences were studied only through analyses of the common modern, shallow environments, which are fundamentally different in their nature from halite-depositing, deep waterbodies. Thus, the spatiotemporal evolution of halite sequences remained ambiguous. I will present, first, a study of the active precipitation of halite layers from the only modern analog in the world for deep, halite-precipitating basin; the hypersaline Dead Sea. Then the implications of these results to the geological record will be emphasized. Novel in situ observations in the Dead Sea link seasonal hydroclimatic conditions, thermohaline stratification, halite saturation, and the characteristics of the actively forming halite layers. The main findings of this study are: (a) Halite deposition dynamics is directly related to the development of the thermohaline stratification and it is primarily temperature controlled; it is counter-intuitive to the common approach that focus on the role of the hydrological budget in the study of hypersaline environments. (b) A pronounced depth dependency of the degree of halite saturation and halite deposition. (c) A well-defined seasonality of halite deposition on the deep lakefloor. (d) Preferential halite accumulation at the deep, hypolimnetic lake floor (>25m depth) due to intensive halite dissolution at the shallow epilimnetic lakefloor, and its re-deposition at depth, in a process termed “halite focusing”. (e) Halite accumulates at high rates in the deep lakefloor, doubling (or even more) the expected thickness without halite focusing. (f) Freshwater inflows further amplify halite thickness at the drier parts of the lake. These findings provide insights and quantify the processes required for reconstructing past hypersaline environments from halite sequences, in the Dead Sea and worldwide. Close abstractClose abstract
    Share the event Halite deposition in the Dead Sea: Direct observations and lessons for thick halite sequences in the geological record on email Add the event Halite deposition in the Dead Sea: Direct observations and lessons for thick halite sequences in the geological record to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Zoom meeting on https://weizmann.zoom.us/j/7621438333?pwd=c0lpdlQzYSthellXWG9rZnM0ZDRFZz09
  • Lecture

    Inferring Mars' Surface Winds by Analyzing the Global Distribution of Barchan Dunes using a Convolutional Neural Network

    Date: Tuesday, June 29, 2021 Hour: 10:00
    Speaker: Lior Rubanenko, Department of Geological Sciences Stanford University
    Abstract: Sand seas on Mars are riddled with eolian landforms created by accumulating sand particles. When the sand supply is limited and the wind is approximately unidirectional, these land read more »Continue read abstract
    Abstract: Sand seas on Mars are riddled with eolian landforms created by accumulating sand particles. When the sand supply is limited and the wind is approximately unidirectional, these landforms take the shape of crescentic barchan dunes, whose slip-faces are approximately perpendicular to the dominant wind direction, and their horns are oriented downwind. The morphology of barchan dunes is thus routinely used to infer wind conditions on Mars by manually analyzing aerial or satellite imagery. Despite the effectiveness of this technique on a local scale, employing it on a global scale remained challenging thusfar - as manually outlining individual dunes globally is impractical, and automatic detection methods have been largely ineffective at accurately segmenting dunes in images. Here we use Mask R-CNN, an instance segmentation convolutional neural network, to detect and outline dunes globally on Mars in images obtained by the Mars Reconnaissance Orbiter Context Camera (MRO CTX). We measure the morphometrics of dunes from their detected outlines, and infer the direction of the winds that formed them. By comparing the global wind distribution we derived to a global climate model, we study Mars' past and recent climate, and constrain global sand mobility thresholds which offer insight into the erosion and dust lifting capabilities of the atmosphere of the Red Planet. Close abstractClose abstract
    Share the event Inferring Mars' Surface Winds by Analyzing the Global Distribution of Barchan Dunes using a Convolutional Neural Network on email Add the event Inferring Mars' Surface Winds by Analyzing the Global Distribution of Barchan Dunes using a Convolutional Neural Network to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Zoom meeting on https://weizmann.zoom.us/j/7621438333?pwd=c0lpdlQzYSthellXWG9rZnM0ZDRFZz09
  • Lecture

    TBA

    Date: Tuesday, May 25, 2021 Hour: 10:00
    Speaker: Elan Levy
    Share the event TBA on email Add the event TBA to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Zoom meeting on https://weizmann.zoom.us/j/7621438333?pwd=c0lpdlQzYSthellXWG9rZnM0ZDRFZz09
  • Lecture

    Stir and mix: studying upper ocean dynamics from theory to application

    Date: Tuesday, May 18, 2021 Hour: 15:00
    Speaker: Abigail Bodner , Environmental and Society Brown University
    Abstract: Near the ocean surface, mixing and turbulence modulate the transfer of heat, momentum, carbon and other properties, between the atmosphere and ocean interior. Accurate representati read more »Continue read abstract
    Abstract: Near the ocean surface, mixing and turbulence modulate the transfer of heat, momentum, carbon and other properties, between the atmosphere and ocean interior. Accurate representation of these processes in General Circulation Models (GCMs) is crucial for simulating atmosphere-ocean interactions. However, all of these processes, generally known as boundary layer turbulence and submesoscale mixing, are on scales smaller than the grid used in GCMs, even at the highest possible resolution. Current submesoscale parameterizations represent the bulk of mixing developed across submesoscale fronts– the sharp interface between waters of different densities– but it has been shown to be too simplistic and unfitting in many circumstances. The presence of turbulence has been missing from these dynamics, and in this talk I will discuss the long-lasting problem of how to correctly include them. 
Building toward a more complete understanding of these processes, a theoretical approach of perturbation analysis is used to include the effects of turbulence as a correction to classic frontogenesis (frontal sharpening) theory. This approach is next extended into a more realistic environment, using a suite of high resolution, turbulence resolving, numerical simulations. It is found that a variety of turbulent processes resulting from winds, waves, convection, and instabilities affect the formation of fronts. Furthermore, this analysis exposes severe limitations in existing techniques to predict potential vorticity dynamics in highly turbulent regimes. Lastly, I will discuss modifying the submesoscale parameterization in GCMs to represent the complex interactions with boundary layer turbulence. Close abstractClose abstract
    Share the event Stir and mix: studying upper ocean dynamics from theory to application on email Add the event Stir and mix: studying upper ocean dynamics from theory to application to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Zoom meeting on https://weizmann.zoom.us/j/7621438333?pwd=c0lpdlQzYSthellXWG9rZnM0ZDRFZz09
  • Lecture

    What causes the leakiness of the North Atlantic Deep Western Boundary Current?

    Date: Tuesday, May 4, 2021 Hour: 10:00
    Speaker: Aviv Solodoch, Department of Atmospheric and Oceanic Sciences UCLA
    Abstract: The Atlantic Meridional Overturning Circulation (AMOC) is a circulation pattern of great climatic importance. Its northward heat flux at the upper water column moderates European w read more »Continue read abstract
    Abstract: The Atlantic Meridional Overturning Circulation (AMOC) is a circulation pattern of great climatic importance. Its northward heat flux at the upper water column moderates European winter climate, and its descending branch captures atmospheric CO2 into the deep ocean, hence buffering the anthropogenically induced rise in global temperature. The Deep Western Boundary Current (DWBC) has classically been considered to be the main AMOC conduit southward at depth. However, tracer data have shown in recent decades that the DWBC "leaks" most of its material to the ocean interior in a small region of the North Atlantic, and that this leaked material continues southward in different, complex routes. These pathways and their causes are still little-explored and not well understood. In this talk I will present analysis of the DWBC leakiness properties and dynamics, based on existing datasets of passively drifting floats, a new high resolution regional numerical model, and theoretical analysis. Several alternative mechanisms of leakiness are considered, and a novel finding is that a leading cause for the leakiness is inertial separation of the current from the seafloor, near underwater capes. The role of eddies and their interaction with the separation process is investigated as well. Implications for the robustness of the deep AMOC pathways are discussed. Close abstractClose abstract
    Share the event What causes the leakiness of the North Atlantic Deep Western Boundary Current? on email Add the event What causes the leakiness of the North Atlantic Deep Western Boundary Current? to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Zoom meeting on https://weizmann.zoom.us/j/7621438333?pwd=c0lpdlQzYSthellXWG9rZnM0ZDRFZz09
  • Lecture

    Deposition of Gypsum Deltas at the Holocene Dead Sea by outsalting and paleoclimatic insights

    Date: Tuesday, April 27, 2021 Hour: 10:00
    Speaker: Nurit Weber, Department of Earth and Planetary Sciences Weizmann Institute of Sciences
    Abstract: The rapid retreat of the Dead Sea during the past decades led the exposure of unique structures of massive gypsum and aragonite crusts: large capes pointing towards the open lake ( read more »Continue read abstract
    Abstract: The rapid retreat of the Dead Sea during the past decades led the exposure of unique structures of massive gypsum and aragonite crusts: large capes pointing towards the open lake (termed here “gypsum deltas”) and numerous small gypsum mounds scattered on the lake’s exposed shores. Geological field relations, 14C and 34S measurements and thermodynamic calculations provide evidence that the gypsum deltas and the mounds were formed during time-intervals of low lake stands (~420±10 m below mean sea level), when sulfate-rich Ca-chloride brines discharged from the coastal aquifer via saline springs, mixed with the Dead Sea brine and precipitated the gypsum. This mixing process describes a mechanism of “gypsum outsalting”, which is completely different from the conventional view of gypsum as a product of evaporative deposition. Condition for enhanced saline springs discharge and “gypsum outsalting” occurred in the mid to late Holocene period (~ 6.6 to 0.6 ka), and were mainly intensive at the latest stages of regional aridity cycles when lake level was still low and the Dead Sea salinity was at its highest. The ages of formation of the gypsum structures coincide with times of North Atlantic cooling events and grand solar minima suggesting a direct impact of the latter on the Dead Sea hydrology and high sensitivity of the regional hydrology (controlling lake level) to global solar-related events. The frequency of appearance of the gypsum structures seems to follow the Hallstat Cycle that approached minimum at ~3000 2000 years ago. Close abstractClose abstract
    Share the event Deposition of Gypsum Deltas at the Holocene Dead Sea by outsalting and paleoclimatic insights on email Add the event Deposition of Gypsum Deltas at the Holocene Dead Sea by outsalting and paleoclimatic insights to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Zoom meeting on https://weizmann.zoom.us/j/7621438333?pwd=c0lpdlQzYSthellXWG9rZnM0ZDRFZz09
  • Lecture

    Physics-guided machine-learning parameterizations of subgrid processes for climate modeling

    Date: Monday, April 26, 2021 Hour: 14:00
    Speaker: Janni Yuval, Earth, Atmospheric and Planetary Sciences MIT school of Science
    Abstract: Global climate models represent small-scale processes, such as clouds and convection, using subgrid models known as parameterizations. Traditional parameterizations are usually bas read more »Continue read abstract
    Abstract: Global climate models represent small-scale processes, such as clouds and convection, using subgrid models known as parameterizations. Traditional parameterizations are usually based on simplified physical models, and inaccuracies in these parameterizations are a main cause for the large uncertainty in climate projections. One alternative to traditional parameterizations is to use machine learning to learn new parameterizations which are data driven. However, machine-learning parameterizations might violate physical principles and often lead to instabilities when coupled to an atmospheric model. I will show how machine learning algorithms, such as neural networks and random forests, can be used to learn new parameterizations from the output of a three-dimensional high-resolution atmospheric model, while obeying physical constraints such as energy conservation. Implementing these parameterizations in the atmospheric model at coarse resolution leads to stable simulations that replicate the climate of the high-resolution simulation, and capture important statistics such as precipitation extremes. I will also discuss how machine-learning parameterizations can give further insights into the parameterization problem. Specifically, I will show that failures of machine-learning parameterizations can be used to better understand the relationship between large-scale fields and subgrid processes. Close abstractClose abstract
    Share the event Physics-guided machine-learning parameterizations of subgrid processes for climate modeling on email Add the event Physics-guided machine-learning parameterizations of subgrid processes for climate modeling to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Zoom meeting on https://weizmann.zoom.us/j/7621438333?pwd=c0lpdlQzYSthellXWG9rZnM0ZDRFZz09
  • Lecture

    The hydrological paradox - why the whole is less than the sum of its parts?

    Date: Tuesday, April 20, 2021
    Speaker: Erwin Zehe , KIT
    Abstract: Hydrological systems are inherently non-linear and exhibit an enormous structural and functional heterogeneity. Strikingly, we can nevertheless successfully simulate stream flow ge read more »Continue read abstract
    Abstract: Hydrological systems are inherently non-linear and exhibit an enormous structural and functional heterogeneity. Strikingly, we can nevertheless successfully simulate stream flow generation and the water balance of river catchments with rather simple models that are largely incompatible with the frequently reported subscale process heterogeneity and non-linearity. Here we argue that subscale structural heterogeneity and randomness must not prevent the emergence of functional simplicity. On the contrary, we found simplicity to emerge at rather small scales, reflecting self-organization in hydrological functioning not despite but due to subscale small-scale heterogeneity and the dissipative nature of hydrological process. While we acknowledge that hydrological landscapes are heterogeneous, they are by no means a random product. Catchments exhibit a considerable spatial organisation, which manifests through structured patterns of topography, soil, vegetation, self-similar surface and subsurface drainage networks and most prominently through ubiquitous preferential flow phenomena. While this organized “catchment from” does strongly determine present storage, cycling and release of water, energy and chemical species, this catchment form has in turn been shaped by of water, energy, and nutrients of the past. Is this “co-evolution” just chance or manifested self-organization? This question has been inspiring many scientists to search for thermodynamic principles that link form and function in the Earth system. Here we will present evidence that a thermodynamic and information theoretic perspective opens up new avenues for (i) diagnosing and explaining self-organization in hydrological dynamics, (i) upscaling of constituting relations and (i) using thermodynamic optimality for hydrological predictions. Close abstractClose abstract
    Share the event The hydrological paradox - why the whole is less than the sum of its parts? on email Add the event The hydrological paradox - why the whole is less than the sum of its parts? to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Zoom meeting on https://weizmann.zoom.us/j/7621438333?pwd=c0lpdlQzYSthellXWG9rZnM0ZDRFZz09
  • Lecture

    Larger tsunamis from megathrust earthquakes where slab dip is reduced

    Date: Tuesday, April 13, 2021 Hour: 16:00
    Speaker: Bar Oryan, Lamont Doherty Earth Observatory Columbia University
    Abstract: A subset of megathrust earthquakes produce anomalously large tsunamis for their magnitude. All of these recorded ‘tsunami earthquakes’ in the past 50 years had extensional afte read more »Continue read abstract
    Abstract: A subset of megathrust earthquakes produce anomalously large tsunamis for their magnitude. All of these recorded ‘tsunami earthquakes’ in the past 50 years had extensional aftershocks in the upper plate. These include the two largest and most destructive earthquakes of that period, the 2004 Sumatra–Andaman and the 2011 Tohoku events. Evidence from the region of Tohoku indicates that normal fault slip in the upper plate during the earthquake may have contributed to the tsunami size. Here we present a numerical model that shows how a reduction of the dip of a subducting slab, on a timescale of millions of years, can result in an extensional fault failure above a megathrust earthquake on timescales of seconds to months. Slab dip reduction bends the upper plate so that the shallow part fails in extension when a megathrust rupture relieves compressional stress. This results in a distribution of extensional aftershocks comparable to that seen above the Tohoku megathrust. Volcanic arc migra- tion and uplift data for Tohoku and several other tsunami earthquakes is consistent with slab dip reduction. The collection of more such data might identify other areas of tsunami hazard related to slab dip reduction. Close abstractClose abstract
    Share the event Larger tsunamis from megathrust earthquakes where slab dip is reduced on email Add the event Larger tsunamis from megathrust earthquakes where slab dip is reduced to calendar
    Contact: dalia.madhala@weizmann.ac.il
    Zoom meeting on https://weizmann.zoom.us/j/7621438333?pwd=c0lpdlQzYSthellXWG9rZnM0ZDRFZz09
  • Lecture

    Advances of remote sensing in agriculture and forestry for climate change adaptation

    Date: Tuesday, April 6, 2021
    Speaker: Tarin Paz-Kagan , Volcani Institute
    Abstract: Forests and agricultural orchards are becoming increasingly susceptible to drought, ‎insect ‎‎outbreaks, and disease due to climate change worldwide. Thus, forest ‎and ‎a read more »Continue read abstract
    Abstract: Forests and agricultural orchards are becoming increasingly susceptible to drought, ‎insect ‎‎outbreaks, and disease due to climate change worldwide. Thus, forest ‎and ‎agricultural systems management needs to be proactively targeted to improve their ‎resilience to anthropogenic and ‎climate change. The potential of remote sensing ‎data for ‎agriculture and forestry has long been recognized. The global coverage and repositories of different ‎types ‎of satellite data extending integrating with developing UAVs and ‎sensor ‎capabilities provide a unique database, which allows us to develop, test, and ‎implement ‎innovative measures to adapt agriculture and forest to the foreseen climate ‎scenarios. ‎However, there is still a considerable gap between data and information. ‎Remote sensing ‎applications integrated with innovative artificial intelligence techniques ‎could make ‎fundamental discoveries for sustainable environmental management. Thus, ‎the seminar ‎aims to present advanced remote-sensing applications for agriculture and ‎forest to climate ‎change adaptation. Four case studies will be presented, including (1) ‎mapping woody ‎species distribution and richness along the climatic gradient; (2) ‎developing canopy ‎geometry traits to characterize and monitor tree structure using LiDAR ‎applications; and (3) ‎Incorporation winter tree physiology in deciduous orchard into ‎forecast- models of bloom ‎and yield, and (4) leaf to landscape approach to study ‎forest responses to drought. Close abstractClose abstract
    Share the event Advances of remote sensing in agriculture and forestry for climate change adaptation on email Add the event Advances of remote sensing in agriculture and forestry for climate change adaptation to calendar
    Contact: dalia.madhala@weizmann.ac.il
Department of Earth and Planetary Sciences

Department of Earth and Planetary Sciences

Faculty of Chemistry
Weizmann Institute of Science

  • Home
  • Research
  • Faculty
    & Staff
  • Stories & Discoveries
  • Events
  • Gallery
  • Courses
  • Academic Positions
    • Faculty Positions
    • Postdoctoral Positions
    • Ph.D Positions
    • MSc Positions
  • Centers
  • Contact
Department of Earth and Planetary Sciences on Facebook

Last update:
19 Mar 2023