Yaakov H., Heukamp A. S., Riccitelli S. & Rivlin-Etzion M.
(2025)
Nature Communications.
16,
1,
9303.
The lateral geniculate nucleus (LGN) of the thalamus, a major retinal target, processes and relays visual information, including direction selectivity (DS) and orientation selectivity (OS). However, the organization of DS and OS in the LGN, including the extent to which the information is directly inherited from the retina or generated within the LGN, remains poorly understood. Using high-density recordings from across the mouse LGN, we reveal two distinct organization patterns: LGN DS responses are scarce in the central visual field and are topographically aligned to translatory optic flow dynamics around it, whereas OS responses span the visual field. In transgenic mice lacking retinal DS, we find that only LGN DS, but not LGN OS responses are eliminated. Our results suggest that LGN DS is inherited from the retina, although the retinogeniculate transfer is topography-dependent and potentially optimized for representations that support visually-guided behaviors.
Riccitelli S., Yaakov H., Heukamp A. S., Ankri L. & Rivlin-Etzion M.
(2025)
Proceedings of the National Academy of Sciences - PNAS.
122,
1,
e241522312.
Retinal ganglion cells (RGCs) typically respond to light stimulation over their spatially restricted receptive field. Using large-scale recordings in the mouse retina, we show that a subset of non- direction-selective (DS) RGCs exhibit asymmetric activity, selective to motion direction, in response to a stimulus crossing an area far beyond the classic receptive field. The extraclassical response arises via inputs from an asymmetric distal zone and is enhanced by desensitization mechanisms and an inherent DS component, creating a network of neurons responding to motion toward the optic disc. Pharmacological manipulations revealed the necessity of glycinergic amacrine cells for this response. Using in vivo recordings, we identified similar extraclassical responses in lateral geniculate nucleus neurons, suggesting such non conventional DS information is transferred to downstream structures. Our results suggest a complex integration of motion direction processing across the visual field, which arises beyond the classical receptive field boundaries.
Abstract: A key feature of the receptive field of neurons in the visual system is their centresurround antagonism, whereby the centre and the surround exhibit responses of opposite polarity. This organization is thought to enhance visual acuity, but whether and how such antagonism plays a role in more complex processing remains poorly understood. Here, we investigate the role of centre and surround receptive fields in retinal direction selectivity by exposing posterior-preferring OnOff direction-selective ganglion cells (pDSGCs) to adaptive light and recording their response to globally moving objects. We reveal that light adaptation leads to surround expansion in pDSGCs. The pDSGCs maintain their original directional tuning in the centre receptive field, but present the oppositely tuned response in their surround. Notably, although inhibition is the main substrate for retinal direction selectivity, we found that following light adaptation, both the centre- and surround-mediated responses originate from directionally tuned excitatory inputs. Multi-electrode array recordings show similar oppositely tuned responses in other DSGC subtypes. Together, these data attribute a new role for excitation in the direction-selective circuit. This excitation carries an antagonistic centresurround property, possibly designed to sharpen the detection of motion direction in the retina. (Figure presented.). Key points: Receptive fields of direction-selective retinal ganglion cells expand asymmetrically following light adaptation. The increase in the surround receptive field generates a delayed spiking phase that is tuned to the null direction and is mediated by excitation. Following light adaptation, excitation rules the computation in the centre receptive field and is tuned to the preferred direction. GABAergic and glycinergic inputs modulate the null-tuned delayed response differentially. Null-tuned delayed spiking phases can be detected in all types of direction-selective retinal ganglion cells. Light adaptation exposes a hidden directional excitation in the circuit, which is tuned to opposite directions in the centre and surround receptive fields.
Warwick R. A., Riccitelli S., Heukamp A. S., Yaakov H., Swain B. P., Ankri L., Mayzel J., Gilead N., Parness-Yossifon R., Di Marco S. & Rivlin-Etzion M.
(2024)
Science advances.
10,
35,
eadk4062.
The mammalian retina is considered an autonomous circuit, yet work dating back to Ramon y Cajal indicates that it receives inputs from the brain. How such inputs affect retinal processing has remained unknown. We confirmed brain-to-retina projections of histaminergic neurons from the mouse hypothalamus. Histamine application ex vivo altered the activity of various retinal ganglion cells (RGCs), including direction-selective RGCs that gained responses to high motion velocities. These results were reproduced in vivo with optic tract recordings where histaminergic retinopetal axons were activated chemogenetically. Such changes could improve vision of fast-moving objects (e.g., while running), which fits with the known increased activity of histaminergic neurons during arousal. An antihistamine drug reduced optomotor responses to high-speed moving stimuli in freely moving mice. In humans, the same antihistamine nonuniformly modulated visual sensitivity across the visual field, indicating an evolutionary conserved function of the histaminergic system. Our findings expose a previously unappreciated role for brain-to-retina projections in modulating retinal function.
Dopamine has long been reported to enhance antagonistic surrounds of retinal ganglion cells (RGCs). Yet, the retina contains many different RGC subtypes and the effects of dopamine can be subtype-specific. Using multielectrode array (MEA) recordings we investigated how dopamine shapes the receptive fields of RGCs in the mouse retina. We found that the non-selective dopamine receptor agonist apomorphine can either increase or decrease RGCs' surround strength, depending on their subtype. We then used two-photon targeted patch-clamp to target a specific RGC subtype, the transient-Off-αRGC. In line with our MEA recordings, apomorphine did not increase the antagonistic surround of transient-Off-αRGCs but enhanced their responses to Off stimuli in the centre receptive field. Both D- and D-like family receptor (D-R and D-R) blockers had the opposite effect and reduced centre-mediated responses, but differently affected transient-Off-αRGC's surround. While D-R blocker reduced surround antagonism, D-R blocker led to surround activation, revealing On responses to large stimuli. Using voltage-clamp recordings we separated excitatory inputs from Off cone bipolar cells and inhibitory inputs from the primary rod pathway. In control conditions, cone inputs displayed strong surround antagonism, while inputs from the primary rod pathway showed no surround. Yet, the surround activation in the D-R blockade originated from the primary rod pathway. Our findings demonstrate that dopamine differentially affects RGC subtypes via distinct pathways, suggesting that dopamine has a more complex role in shaping the retinal code than previously reported. KEY POINTS: Receptive fields of retinal ganglion cells (RGCs) have a centre-surround organisation, and previous work has shown that this organisation can be modulated by dopamine in a light-intensity-dependent manner. Dopamine is thought to enhance RGCs' antagonistic surround, but a detailed understanding of how different RGC subtypes are affected is missing. Using a multielectrode array recordings, clustering analysis and pharmacological manipulations, we found that dopamine can either enhance or weaken antagonistic surrounds, and also change response kinetics, of RGCs in a subtype-specific manner. We performed targeted patch-clamp recordings of one RGC subtype, the transient-Off-αRGC, and identified the underlying circuits by which dopamine shapes its receptive field. Our findings demonstrate that dopamine acts in a subtype-specific manner and can have complex effects, which has implications for other retinal computations that rely on receptive field structure.
Rivlin-Etzion M. & Ankri L.
(2023)
Frontiers for young minds.
11,
1091174.
The retina is the thin layer in the back of the eyeball where vision begins, and it is actually considered part of the brain. Despite its small size, nerve cells in the retina carry complex information about the colors, edges, and motion that we see. The retina is easier to study than other brain areas, so not only can retinal research help us understand vision, it can even teach us how other brain areas work. The brain is adaptableit can change its activity as changes happen in the environment, but the activity of retinal cells was thought to be fixed and stable even in the presence of changes in the visual environment of the animal. In our research, we discovered that the retina, too, can change its activity. Therefore, retinal research can teach us about other brain areas, including how they adapt to changes in the environment.
Retinal direction-selectivity originates in starburst amacrine cells (SACs), which display a centrifugal preference, responding with greater depolarization to a stimulus expanding from soma to dendrites than to a collapsing stimulus. Various mechanisms were hypothesized to underlie SAC centrifugal preference, but dissociating them is experimentally challenging and the mechanisms remain debatable. To address this issue, we developed the Retinal Stimulation Modeling Environment (RSME), a multifaceted data-driven retinal model that encompasses detailed neuronal morphology and biophysical properties, retina-tailored connectivity scheme and visual input. Using a genetic algorithm, we demonstrated that spatiotemporally diverse excitatory inputs-sustained in the proximal and transient in the distal processes-are sufficient to generate experimentally validated centrifugal preference in a single SAC. Reversing these input kinetics did not produce any centrifugal-preferring SAC. We then explored the contribution of SAC-SAC inhibitory connections in establishing the centrifugal preference. SAC inhibitory network enhanced the centrifugal preference, but failed to generate it in its absence. Embedding a direction selective ganglion cell (DSGC) in a SAC network showed that the known SAC-DSGC asymmetric connectivity by itself produces direction selectivity. Still, this selectivity is sharpened in a centrifugal-preferring SAC network. Finally, we use RSME to demonstrate the contribution of SAC-SAC inhibitory connections in mediating direction selectivity and recapitulate recent experimental findings. Thus, using RSME, we obtained a mechanistic understanding of SACs' centrifugal preference and its contribution to direction selectivity.
A retina completely devoid of topographic variations would be homogenous, encoding any given feature uniformly across the visual field. In a naive view, such homogeneity would appear advantageous. However, it is now clear that retinal topographic variations exist across mammalian species in a variety of forms and patterns. We briefly review some of the more established topographic variations in retinas of different mammalian species and focus on the recent discovery that cells belonging to a single neuronal subtype may exhibit distinct topographic variations in distribution, morphology, and even function. We concentrate on the mouse retina-originally viewed as homogenous-in which genetic labeling of distinct neuronal subtypes and other advanced techniques have revealed unexpected anatomical and physiological topographic variations. Notably, different subtypes reveal different patterns of nonuniformity, which may even be opposite or orthogonal to one another. These topographic variations in the encoding of visual space should be considered when studying visual processing in the retina and beyond. Expected final online publication date for the Annual Review of Vision Science, Volume 6 is September 15, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
An antagonistic center-surround receptive field is a key feature in sensory processing, but how it contributes to specific computations such as direction selectivity is often unknown. Retinal On-starburst amacrine cells (SACs), which mediate direction selectivity in direction-selective ganglion cells (DSGCs), exhibit antagonistic receptive field organization: depolarizing to light increments and decrements in their center and surround, respectively. We find that a repetitive stimulation exhausts SAC center and enhances its surround and use it to study how center-surround responses contribute to direction selectivity. Center, but not surround, activation induces direction-selective responses in SACs. Nevertheless, both SAC center and surround elicited direction-selective responses in DSGCs, but to opposite directions. Physiological and modeling data suggest that the opposing direction selectivity can result from inverted temporal balance between excitation and inhibition in DSGCs, implying that SACs response timing dictates direction selectivity. Our findings reveal antagonistic center-surround mechanisms for direction selectivity and demonstrate how context-dependent receptive field reorganization enables flexible computations.
Motion detection is paramount for computational vision processing. This is however a particularly challenging task for a neuromorphic hardware in which algorithms are based on interconnected spiking entities, as the instantaneous visual stimuli reports merely on luminance change. Here we describe a neuromorphic algorithm, in which an array of neuro-oscillators is utilized to detect motion and its direction over an entire field of view. These oscillators are induced via phase shifted Gabor functions, allowing them to oscillate in response to motion in one predefined direction, and to dump to zero otherwise. We developed the algorithm using the Neural Engineering Framework (NEF), making it applicable for a variety of neuromorphic hardware. Our algorithm extends the existing growing set of approaches aiming at utilizing neuromorphic hardware for vision processing, which enable to minimize energy exploitation and silicon area while enhancing computational capabilities.
The availability of genetically modified calcium indicators has made calcium imaging of neural signaling accessible and widespread whereby recording hundreds or even thousands of cells simultaneously is commonplace. Immunocytochemistry also produces large images with a great number of antibody labeled cells. A major bottleneck towards fully harnessing these techniques is the delineation of the neural cell bodies. We designed an online robust cell segmentation algorithm based on deep learning which does not require installation or expertise. The robust segmentation is achieved by pre-processing images submitted to the site and running them through DeepLabv3 networks trained on human segmented micrographs. The algorithm does not entail any parameter tuning; can be further trained if necessary; is robust to cell types and microscopy techniques (from immunocytochemistry to single and multi-photon microscopy) and does not require image pre-processing.
The ability of the retina to adapt to changes in mean light intensity and contrast is well known. Classically, however, adaptation is thought to affect gain but not to change the visual modality encoded by a given type of retinal neuron. Recent findings reveal unexpected dynamic properties in mouse retinal neurons that challenge this view. Specifically, certain cell types change the visual modality they encode with variations in ambient illumination or following repetitive visual stimulation. These discoveries demonstrate that computations performed by retinal circuits with defined architecture can change with visual input. Moreover, they pose a major challenge for central circuits that must decode properties of the dynamic visual signal from retinal outputs.
Stimulus characteristics of the mouse's visual field differ above and below the skyline. Here, we show for the first time that retinal ganglion cells (RGCs), the output neurons of the retina, gradually change their functional properties along the ventral-dorsal axis to allow better representation of the different stimulus characteristics. We conducted two-photon targeted recordings of transient-Offα-RGCs and found that they gradually became more sustained along the ventral-dorsal axis, revealing >5-fold-longer duration responses in the dorsal retina. Using voltage-clamp recordings, pharmacology, and genetic manipulation, we demonstrated that the primary rod pathway underlies this variance. Our findings challenge the current belief that RGCs of the same subtype exhibit the same light responses, regardless of retinal location, and suggest that networks underlying RGC responses may change with retinal location to enable optimized sampling of the visual image. Warwick et al. show that retinal ganglion cells of the same subtype display different light responses depending on retinal location, resulting from variations in their underlying circuits. They suggest that these variations enable optimized sampling of the visual image.
Direction-selective ganglion cells (DSGCs) are tuned to motion in one direction. Starburst amacrine cells (SACs) are thought to mediate this direction selectivity through precise anatomical wiring to DSGCs. Nevertheless, we previously found that visual adaptation can reverse DSGCs's directional tuning, overcoming the circuit anatomy. Here we explore the role of SACs in the generation and adaptation of direction selectivity. First, using pharmacogenetics and two-photon calcium imaging, we validate that SACs are necessary for direction selectivity. Next, we demonstrate that exposure to an adaptive stimulus dramatically alters SACs' synaptic inputs. Specifically, after visual adaptation, On-SACs lose their excitatory input during light onset but gain an excitatory input during light offset. Our data suggest that visual stimulation alters the interactions between rod- and cone-mediated inputs that converge on the terminals of On-cone BCs. These results demonstrate how the sensory environment can modify computations performed by anatomically defined neuronal circuits.
Sun L. O., Jiang Z., Rivlin-Etzion M., Hand R., Brady C. M., Matsuoka R. L., Yau K., Feller M. B. & Kolodkin A. L.
(2013)
Science.
342,
6158,
p. 590-599
1241974.
Direction-selective responses to motion can be to the onset (On) or cessation (Off) of illumination. Here, we show that the transmembrane protein semaphorin 6A and its receptor plexin A2 are critical for achieving radially symmetric arborization of On starburst amacrine cell (SAC) dendrites and normal SAC stratification in the mouse retina. Plexin A2 is expressed in both On and Off SACs; however, semaphorin 6A is expressed in On SACs. Specific On-Off bistratified direction- selective ganglion cells in semaphorin 6A(-/-) mutants exhibit decreased tuning of On directional motion responses. These results correlate the elaboration of symmetric SAC dendritic morphology and asymmetric responses to motion, shedding light on the development of visual pathways that use the same cell types for divergent outputs.
Direction selectivity in the retina is mediated by direction-selective ganglion cells. These cells are part of a circuit in which they are asymmetrically wired to inhibitory neurons. Thus, they respond strongly to an image moving in the preferred direction and weakly to an image moving in the opposite (null) direction. Here, we demonstrate that adaptation with short visual stimulation of a direction-selective ganglion cell using drifting gratings can reverse this cell's directional preference by 180 degrees. This reversal is robust, long lasting, and independent of the animal's age. Our findings indicate that, even within circuits that are hardwired, the computation of direction can be altered by dynamic circuit mechanisms that are guided by visual stimulation.
Rosin B., Slovik M., Mitelman R., Rivlin-Etzion M., Haber S. N., Israel Z., Vaadia E. & Bergman H.
(2011)
Neuron.
72,
2,
p. 370-384
Continuous high-frequency deep brain stimulation (DBS) is a widely used therapy for advanced Parkinson's disease (PD) management. However, the mechanisms underlying DBS effects remain enigmatic and are the subject of an ongoing debate. Here, we present and test a closed-loop stimulation strategy for PD in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) primate model of PD. Application of pallidal closed-loop stimulation leads to dissociation between changes in basal ganglia (BG) discharge rates and patterns, providing insights into PD pathophysiology. Furthermore, cortico-pallidal closed-loop stimulation has a significantly greater effect on akinesia and on cortical and pallidal discharge patterns than standard open-loop DBS and matched control stimulation paradigms. Thus, closed-loop DBS paradigms, by modulating pathological oscillatory activity rather than the discharge rate of the BG-cortical networks, may afford more effective management of advanced PD. Such strategies have the potential to be effective in additional brain disorders in which a pathological neuronal discharge pattern can be recognized.
Rivlin-Etzion M., Zhou K., Wei W., Elstrott J., Nguyen P. L., Barres B. A., Huberman A. D. & Feller M. B.
(2011)
Journal of Neuroscience.
31,
24,
p. 8760-8769
On-Off direction-selective retinal ganglion cells (DSGCs) encode the axis of visual motion. They respond strongly to an object moving in a preferred direction and weakly to an object moving in the opposite, "null," direction. Historically, On-Off DSGCs were classified into four subtypes according to their directional preference (anterior, posterior, superior, or inferior). Here, we compare two genetically identified populations of On-Off DSGCs: dopamine receptor 4 (DRD4)-DSGCs and thyrotropin-releasing hormone receptor (TRHR)-DSGCs. We find that although both populations are tuned for posterior motion, they can be distinguished by a variety of physiological and anatomical criteria. First, the directional tuning of TRHR-DSGCs is broader than that of DRD4-DSGCs. Second, whereas both populations project similarly to the dorsal lateral geniculate nucleus, they project differently to the ventral lateral geniculate nucleus and the superior colliculus. Moreover, TRHR-DSGCs, but not DRD4-DSGCs, also project to the zona incerta, a thalamic area not previously known to receive direction-tuned visual information. Our findings reveal unexpected diversity among mouse On-Off DSGC subtypes that uniquely process and convey image motion to the brain.
Bergman H., Zaidel A., Rosin B., Slovik M., Rivlin-Etzion M., Moshel S. & Israel Z.
(2010)
Handbook of Behavioral Neuroscience
.
C ed.
Vol. 20.
p. 653-658
(trueHandbook of Behavioral Neuroscience).
This chapter reviews that the core pathology of PD is degeneration of the dopamine neurons in the midbrain and the resulting depletion of striatal dopamine. The striatum is the major input stage of the basal ganglia, receiving input from the cerebral cortex and thalamus, and projecting directly and indirectly to the output stages of the basal ganglia the internal segment of the globus pallidus (GPi) and the substantia nigra pars reticulata (SNr). The dopamine precursor l-DOPA remains the gold standard for the treatment of PD. However, long-term use of l-DOPA is associated with the development of motor complications. It discusses that the multi-stage therapy of Parkinson's disease (PD), from dopamine replacement methods to modulation of the activity of the basal ganglia structures using deep Brain Stimulation DBS, reinstates interest in identifying the critical features of abnormal basal ganglia activity that follow striatal dopamine depletion and lead to the symptoms. The chapter summarizes the main physiological findings in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) primate model of PD, and compares them to the recent physiological findings in human patients. There is an accumulation of data linking excessive synchrony at low frequencies in basal ganglia-thalamo-cortical loops to impaired motor processing in PD. Whether synchronization is an epiphenomenon or truly pathogenic in PD, it provides a clear biological marker for the disease process. Recent studies indicate the differential roles or correlates of the distinctive bands of oscillatory activity in the pathogenesis of PD. It suggests that amelioration of specific domains of basal ganglia-cortical synchronized oscillatory activity could form the basis for future closed-loop stimulation regimes for human PD patients.
Adler A., Joshua M., Rivlin-Etzion M., Mitelman R., Marmor O., Prut Y. & Bergman H.
(2010)
Journal of Neurophysiology.
103,
1,
p. 346-359
Adler A, Joshua M, Rivlin-Etzion M, Mitelman R, Marmor O, Prut Y, Bergman H. Neurons in both pallidal segments change their firing properties similarly prior to closure of the eyes. J Neurophysiol 103: 346-359, 2010. First published October 28, 2009; doi: 10.1152/jn.00765.2009. Current anatomical models of the cortico-basal ganglia (BG) network predict reciprocal discharge patterns between the external and internal segments of the globus pallidus (GPe and GPi, respectively), as well as cortical driving of BG activity. However, physiological studies revealing similarity in the transient responses of GPe and GPi neurons cast doubts on these predictions. Here, we studied the discharge properties of GPe, GPi, and primary motor cortex neurons of two monkeys in two distinct states: when eyes are open versus when they are closed. Both pallidal populations exhibited decreased discharge rates in the "eye closed" state accompanied by elevated values of the coefficient of variation (CV) of their interspike interval (ISI) distributions. The pallidal modulations in discharge patterns were partially attributable to larger fractions of longer ISIs in the "eye closed" state. In addition, the pallidal discharge modulations were gradual, starting prior to closing of the eyes. Cortical neurons, as opposed to pallidal neurons, increased their discharge rates steeply on closure of the eyes. Surprisingly, the cortical rate modulations occurred after pallidal modulations. However, as in the pallidum, the CV values of cortical ISI distributions increased in the "eye closed" state, indicating a more bursty discharge pattern in that state. Thus changes in GPe and GPi discharge properties were positively correlated, suggesting that the subthalamic nucleus and/or the striatum constitute the main common driving force for both pallidal segments. Furthermore, the early, unexpected changes in the pallidum are better explained by a subcortical rather than a cortical loop through the BG.
Rivlin-Etzion M., Elias S., Heimer G. & Bergman H.
(2010)
Recent Advances in Parkinsons Disease: Basic Research
.
C ed.
p. 259-273
The normal activity of basal ganglia neurons is characterized by Poisson-like (random) firing patterns. Correlations between neurons of the same structure are weak or non-existent. By contrast, synchronous oscillations are commonly found in the basal ganglia of human patients and animal models of Parkinson's disease. The frequency of these oscillations is often similar to that of the parkinsonian tremor, but their role in generating the tremor or other parkinsonian symptoms is still under debate. The tremor is intermittent and does not appear in all human patients. Similarly, primate models tend to develop tremor as a function of species of monkey. African green (vervet) monkeys usually demonstrate a high-amplitude, low-frequency (4-7 Hz) tremor beyond their akinesia and bradykinesia, whereas macaques tend to be akinetic rigid and rarely demonstrate a low-amplitude high-frequency (10-12 Hz) action-postural tremor. We took advantage of this fact and studied the appearance of the synchronicity and oscillations in six monkeys, three vervets and three macaques, before and after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) systemic treatment and induction of parkinsonism. Multiple extracellular recordings were conducted in the primary motor cortex of two monkeys and in the globus pallidus (GP) of all six monkeys. All the monkeys became akinetic and bradykinetic as a result of the MPTP treatment, but only vervets demonstrated prolonged episodes of low-frequency (4-6Hz) tremor, whereas macaques were non-tremulous. The GP population exhibited similar to 5 Hz oscillatory activity in all six monkeys, whereas similar to 10 Hz neural oscillations were only detected in the tremulous monkeys. The activity of the cortical neurons became strongly oscillatory at similar to 10 Hz in one of these monkeys, but not the other, although both were tremulous and exhibited comparable pallidal oscillatory activity. Finally, synchronous oscillations, when present, were centred around the higher frequencies of oscillations. These findings suggest that there is a correlation between high-frequency GP neural oscillations and tremor. Furthermore, these pallidal 10 Hz oscillations are probably transferred to the periphery through cortical and brainstem pathways.
Rivlin-Etzion M., Marmor O., Saban G., Rosin B., Haber S. N., Vaadia E., Prut Y. & Bergman H.
(2008)
Journal of Neuroscience.
28,
3,
p. 633-649
Oscillatory bursting activity is commonly found in the basal ganglia (BG) and the thalamus of the parkinsonian brain. The frequency of these oscillations is often similar to or higher than that of the parkinsonian tremor, but their relationship to the tremor and other parkinsonian symptoms is still under debate. We studied the frequency dependency of information transmission in the cortex-BG and cortex-periphery loops by recording simultaneously from multiple electrodes located in the arm-related primary motor cortex (MI) and in the globus pallidus (GP) of two vervet monkeys before and after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment and induction of parkinsonian symptoms. We mimicked the parkinsonian bursting oscillations by stimulating with 35 ms bursts given at different frequencies through microelectrodes located in MI or GP while recording the evoked neuronal and motor responses. In the normal state, microstimulation of MI or GP does not modulate the discharge rate in the other structure. However, the functional-connectivity between MI and GP is greatly enhanced after MPTP treatment. In the frequency domain, GP neurons usually responded equally to 1-15 Hz stimulation bursts in both states. In contrast, MI neurons demonstrated low-pass filter properties, with a cutoff frequency above 5 Hz for the MI stimulations, and below 5 Hz for the GP stimulations. Finally, muscle activation evoked by MI microstimulation was markedly attenuated at frequencies higher than 5 Hz. The low-pass properties of the pathways connecting GP to MI to muscles suggest that parkinsonian tremor is not directly driven by the BG 5-10 Hz burst oscillations despite their similar frequencies.
Rosin B., Nevet A., Elias S., Rivlin-Etzion M., Israel Z. & Bergman H.
(2007)
Parkinsonism & related disorders..
13,
SUPPL. 3,
p. S437-S439
Low-frequency resting tremor is one of the cardinal signs of Parkinson's disease (PD) and occurs also in some of its animal models. Current physiological Studies and models of the basal ganglia indicate that changes of discharge pattern and synchronization of basal ganglia neurons rather than modification in their discharge rate are crucial to the pathophysiology of PD. However, parkinsonian tremor is not strictly correlated with the synchronous oscillations in the basal ganglia networks. We therefore suggest that abnormal basal ganglia output enforces abnormal thalamo-cortical processing leading to akinesia, the main negative symptom of Parkinson's disease. The parkinsonian positive motor signs, such as tremor and rigidity, most likely evolve as a downstream compensatory mechanism.
Rivlin-Etzion M., Marmor O., Heimer G., Raz A., Nini A. & Bergman H.
(2006)
Current Opinion in Neurobiology.
16,
6,
p. 629-637
Low frequency rest tremor is one of the cardinal signs of Parkinson's disease and some of its animal models. Current physiological studies and models of the basal ganglia differ as to which aspects of neuronal activity are crucial to the pathophysiology of Parkinson's disease. There is evidence that neural oscillations and synchronization play a central role in the generation of the disease. However, parkinsonian tremor is not strictly correlated with the synchronous oscillations in the basal ganglia networks. Rather, abnormal basal ganglia output enforces abnormal thalamo-cortical processing leading to akinesia, the main negative symptom of Parkinson's disease. Parkinsonian tremor has probably evolved as a downstream compensatory mechanism.
Heimer G., Rivlin-Etzion M., Bar-Gad I., Goldberg J. A., Haber S. N. & Bergman H.
(2006)
Journal of Neuroscience.
26,
31,
p. 8101-8114
Current physiological studies emphasize the role of neuronal oscillations and synchronization in the pathophysiology of Parkinson's disease; however, little is known about their specific roles in the neuronal substrate of dopamine replacement therapy (DRT). We investigated oscillatory activity and correlations throughout the different states of levodopa-naive parkinsonism as well as "Off -On" and dyskinetic states of DRT in the external globus pallidum (GPe) of tremulous (vervet) and rigid-akinetic (macaque) monkeys and in the internal globus pallidum (GPi) of the vervet monkey. We found that, although oscillatory activity of cells and interneuronal correlation in both pallidal segments increases after induction of parkinsonism with 1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine ( MPTP) and decreases in response to DRT, important differences exist between the two pallidal segments. In the GPi, the fraction of oscillatory cells and relative power of oscillations were significantly higher than in the GPe, and the dominant frequency was within the range of 7.5-13.5 Hz compared with a range of 4.5-7.5 Hz within the GPe. The interneuronal correlations were mostly oscillatory in the GPi, whereas at least half are non-oscillatory in the GPe. We demonstrate that the tremor characteristics after exposure to DRT do not resemble those of the normal or the levodopa-naive state. Moreover, although DRT reverses the MPTP-induced neuronal changes ( rate, pattern, and pairwise correlations), the balance between GPe and GPi fails to restore. We therefore suggest that this imbalance reflects additional abnormal organization of the basal ganglia networks in response to dopamine replacement and may constitute the physiological substrate of the limitations and side effects of chronic DRT.
Rivlin-Etzion M., Ritov Y., Heimer G., Bergman H. & Bar-Gad I.
(2006)
Journal of Neurophysiology.
95,
5,
p. 3245-3256
Spectral analysis of neuronal spike trains is an important tool in understanding the characteristics of neuronal activity by providing insights into normal and pathological periodic oscillatory phenomena. However, the refractory period creates high-frequency modulations in spike-train firing rate because any rise in the discharge rate causes a descent in subsequent time bins, leading to multifaceted modifications in the structure of the spectrum. Thus the power spectrum of the spiking activity ( autospectrum) displays elevated energy in high frequencies relative to the lower frequencies. The spectral distortion is more dominant in neurons with high firing rates and long refractory periods and can lead to reduced identification of low-frequency oscillations ( such as the 5- to 10-Hz burst oscillations typical of Parkinsonian basal ganglia and thalamus). We propose a compensation process that uses shuffling of interspike intervals (ISIs) for reliable identification of oscillations in the entire frequency range. This compensation is further improved by local shuffling, which preserves the slow changes in the discharge rate that may be lost in global shuffling. Cross-spectra of pairs of neurons are similarly distorted regardless of their correlation level. Consequently, identification of low-frequency synchronous oscillations, even for two neurons recorded by a single electrode, is improved by ISI shuffling. The ISI local shuffling is computed with confidence limits that are based on the first-order statistics of the spike trains, thus providing a reliable estimation of auto-and cross-spectra of spike trains and making it an optimal tool for physiological studies of oscillatory neuronal phenomena.
Heimer G., Rivlin M., Israel Z. & Bergman H.
(2006)
Parkinson's Disease and Related Disorders
.
Vol. 70.
p. 17-20
Early physiological studies emphasized changes in the discharge rate of basal ganglia in the pathophysiology of Parkinson's disease (PD), whereas recent studies stressed the role of the abnormal oscillatory activity and neuronal synchronization of pallidal cells. However, human observations cast doubt on the synchronization hypothesis since increased synchronization may be an epi-phenomenon of the tremor or of independent oscillators with similar frequency. Here, we show that modern actor/critic models of the basal ganglia predict the emergence of synchronized activity in PD and that significant non-oscillatory and oscillatory correlations are found in MPTP primates. We conclude that the normal fluctuation of basal ganglia dopamine levels combined with local cortico-striatal learning rules lead to noncorrelated activity in the pallidum. Dopamine depletion, as in PD, results in correlated pallidal activity, and reduced information capacity. We therefore suggest that future deep brain stimulation (DBS) algorithms may be improved by desynchronizing pallidal activity.