All events, All years

Plasticity in the Human Ventral Stream:: Regional Differences Across Time Scales

Lecture
Date:
Monday, February 9, 2009
Hour: 12:30
Location:
Arthur and Rochelle Belfer Building for Biomedical Research
Prof. Kalanit Grill-Spector
|
Dept of Psychology & Neurosciences Institute Stanford University, CA

The human ventral stream consists of regions in the lateral and ventral aspects of the occipital and temporal lobes and is involved in visual recognition. One robust characteristic of selectivity in the adult human ventral stream is category selectivity. Category selectivity is manifested by both a regional preference to particular object categories, such as faces, places and bodyparts, as well as in specific (and reproducible) distributed response patterns across the ventral stream for different object categories. However, it is not well understood how experience modifies these representations and how do these representations come about throughout development. Here, I will describe two sets of experiments in which we addressed these important questions. First, I will describe experiments in adults in which we examined the effect of repetition on categorical responses in the ventral stream. Repeating objects decreases responses in the human ventral stream. However, repetition largely does not change the profile of category selectivity in the ventral stream, except for a place-selective region in the collateral sulcus in which long-lagged repetitions sharpened its responses. Second, I will describe experiments in which we examined changes in category selectivity throughout development from middle childhood (7-11 years), through adolescence (12-16) into adulthood. Surprisingly, we find that it takes more than a decade for the development of adult-like face and place-selective regions. In contrast, the lateral occipital object-selective region showed an adult-like profile by age 7. Finally, I will discuss the implications of these results on plasticity in the ventral stream and our theoretical models linking between fMRI measurements and the underlying neural mechanisms.

Neuronal Circuitry of Conditioned Fear

Lecture
Date:
Monday, February 2, 2009
Hour: 12:30
Location:
Arthur and Rochelle Belfer Building for Biomedical Research
Prof. Andreas Lüthi
|
Friedrich Miescher Institute, Switzerland

Fearful Brains in an Anxious World

Lecture
Date:
Sunday, February 1, 2009
Hour: 15:00
Location:
Arthur and Rochelle Belfer Building for Biomedical Research
Prof. Joseph E. Ledoux
|
Center for Neural Science, New York University

Generation of temporal patterns in the olivo-cerebellar system

Lecture
Date:
Thursday, January 22, 2009
Hour: 12:30
Location:
Jacob Ziskind Building
Dr. Gilad Jacobson
|
Dept of Neurobiology Hebrew University, Jerusalem

The olivo-cerebellar system plays a crucial role in timing of both motor and non-motor tasks. The mechanisms underlying this timing capability are still unclear. Here I propose a plausible mechanism in which a temporal pattern reflects accurate phase relationships between the oscillatory activity of olivary neurons. I provide evidence from chronic multi-electrode recordings in awake rats that inferior olive oscillations possess hitherto unknown properties that: (1) Oscillations in different parts of the inferior olive can maintain constant, non-zero phase differences; (2) The oscillation frequency of olivary neurons is co-modulated; and (3) Phase differences are well maintained despite frequency changes. Thus, the inferior olive can generate not only “clock ticks” at the oscillation cycle duration, but more importantly shorter intervals that emerge by combining different parts of the olivary circuitry. This enables the olivo-cerebellar circuit to support timing in the range implicated by behavioural studies.

Personal theories and self-images: Critical tools in the rehabilitation from a severe brain injury

Lecture
Date:
Sunday, January 18, 2009
Hour: 14:45
Location:
Arthur and Rochelle Belfer Building for Biomedical Research
Prof. Yoram Eshet
|
Dept of Psychology & Education The Open University of Israel

The lecture is given by a person who suffers from a severe (right-parietal) brain injury from the Yom Kippur War (1973). It discusses the injury as it is perceived by the injured person. The lecture focuses on self-images of the injury and emphasizes the pivotal role of higher cognitive processes, such as personal theories and narratives, as critical tools for a successful; rehabilitation.

Learning to smell: Cortical plasticity and odor perception

Lecture
Date:
Wednesday, January 14, 2009
Hour: 10:30
Location:
Arthur and Rochelle Belfer Building for Biomedical Research
Prof. Donald Wilson
|
New York University School of Medicine & Emotional Brain Institute Nathan Kline Institute for Psychiatric Research

Odor perception - discrimination and recognition of volatile chemicals in the environment – is critical for wide ranging behaviors including kin recognition, mate selection, predator avoidance, homing, and feeding. Most naturally occurring odors are complex mixtures, often containing hundreds of different components. Furthermore, natural odors invariably occur against odorous backgrounds. Thus, olfaction and odor perception involves far more than simple odor ligands binding to receptors in the nose. I will describe recent work

The tempotron: applications to visual and time-warp invariant auditory processing

Lecture
Date:
Tuesday, January 13, 2009
Hour: 12:30
Location:
Jacob Ziskind Building
Dr. Robert Guetig
|
Racah Institute of Physics & Interdisciplinary Center for Neural Computation Hebrew University, Jerusalem

The timing of action potentials of sensory neurons contains substantial information about the eliciting stimuli. Although computational advantages of spike-timing-based neuronal codes have long been recognized, it is unclear whether and how neurons can learn to read out such representations. We propose a novel biologically plausible supervised synaptic learning rule, the tempotron, enabling neurons to efficiently learn a broad range of decision rules, even when information is embedded in the spatio-temporal structure of spike patterns and not in mean firing rates. We demonstrate the enhanced performance of the tempotron over the rate-based perceptron in reading out spike patterns from retinal ganglion cell populations. Extending the tempotron to conductance-based voltage kinetics, we show that this model can subserve time-warp invariant processing of afferent spike patterns. Furthermore, we show that the conductance-based tempotron can learn to balance excitation and inhibition to match its integration time constant to the temporal scale of a given processing task. We show that already a small population of neurons can solve the TI46 isolated digit speech recognition task with near perfect performance

How to migrate when immobilized: Novel role for Reelin in the migration of cortical neurons

Lecture
Date:
Wednesday, January 7, 2009
Hour: 12:30
Location:
Nella and Leon Benoziyo Building for Brain Research
Prof. Michael Frotscher
|
Institute of Anatomy & Cell Biology University of Freiburg, Germany

Reelin, a glycoprotein of the extracellular matrix, is secreted by Cajal-Retzius cells in the marginal zone of the cortex and controls the radial migration of cortical neurons. Reelin signaling involves the lipoprotein receptors apolipoprotein E receptor 2 (ApoER2) and very low density lipoprotein receptor (VLDLR), the adapter protein Disabled1 (Dab1), and phosphatidylinositol-3-kinase (PI3K). In regulating neuronal migration, Reelin signaling eventually acts on the cytoskeleton; however, its effects on the dynamic reorganization of the cytoskeleton have remained obscure. In reeler mutants deficient in Reelin, the majority of cortical neurons are unable to migrate to their destinations, suggesting Reelin signaling to be essential for the dynamic cytoskeletal reorganization that is required for neurons to migrate. In contrast, we show that Reelin signaling stabilizes the cytoskeleton by serine3 phosphorylation of n-cofilin, an actin-depolymerizing protein. Phosphorylation at serine3 renders n-cofilin unable to depolymerize F-actin. However, depolymerization of F-actin is required for cytoskeletal reorganization. The Reelin receptor ApoER2, Dab1, src family kinases (SFKs), and PI3K were found to be involved in n-cofilin serine3 phosphorylation. Phosphorylation of n-cofilin was observed in the leading processes of migrating neurons when they reached the Reelin-containing marginal zone. Using a stripe choice assay, we found neuronal processes to be stable on Reelin-coated stripes. In contrast, on control stripes they formed lamellipodia as a sign of ongoing growth. These new results indicate that Reelin-induced stabilization of neuronal processes anchors them to the marginal zone which is crucial for directional migration by nuclear translocation. (Supported by the German Research Foundation, DFG: SFB 592)

Rule-Rationality versus Act-Rationality

Lecture
Date:
Tuesday, December 30, 2008
Hour: 12:30
Location:
Jacob Ziskind Building
Prof. Yisrael Aumann
|
Nobel Prize Laureate in Economics, 2005 The Center for the Study of Rationality Hebrew University, Jerusalem

People's actions often deviate from rationality, i.e., self-interested behavior. We propose a paradigm called rule-rationality, according to which people do not maximize utility in each of their acts, but rather follow rules or modes of behavior that usually---but not always---maximize utility. Specifically, rather than choosing an act that maximizes utility among all possible acts in a given situation, people adopt rules that maximize average utility among all applicable rules, when the same rule is applied to many apparently similar situations. The distinction is analogous to that between Bentham's "act-utilitarianism'' and the "rule-utilitarianism'' of Mill, Harsanyi, and others. The genesis of such behavior is examined, and examples are given. The paradigm may provide a synthesis between rationalistic neo-classical economic theory and behavioral economics.

Nonlinearity, memory, and phase transitions in learning

Lecture
Date:
Thursday, December 25, 2008
Hour: 12:00
Location:
Nella and Leon Benoziyo Building for Brain Research
Dr. Ilya Nemenman
|
Computer, Computation and Statistical Sciences Division & Center for Nonlinear Studies Los Alamos National Laboratory

Abstracting from physiological details, I will present a theory that suggests an explanation behind critical periods in learning as a natural consequence of learning dynamics under a small and realistic set of assumptions. Surprisingly, the same theory offers an explanation for other animal learning phenomena, such as the tendency to reverse to the status quo following a transient learning experience. Additionally, the theory suggests simple experiments that can be used to prove or refute it. If the time permits, as a commercial for future results, I will finish the talk with a brief overview of recent attempts at LANL for petascale simulations of the mammalian visual cortex.

Pages

All events, All years

Optogenetics:Technology Development

Lecture
Date:
Sunday, December 14, 2008
Hour: 14:30
Location:
Arthur and Rochelle Belfer Building for Biomedical Research
Prof. Karl Deisseroth
|
Depts of Bioengineering& Psychiatry, Stanford University

In 1979, Francis Crick delineated the major challenges facing neuroscience and called for a technology by which all neurons of just one type could be controlled, “leaving the others more or less unaltered”. A new set of technologies now called optogenetics, synthesizing microbial opsins and solid-state optics, has achieved the goal of millisecond-precision bidirectional control of defined cell types in freely behaving mammals. ChR2 was the first microbial opsin brought to neurobiology, where we initially found that ChR2-expressing neurons can fire blue light-triggered action potentials with millisecond precision, as a result of depolarizing cation flux, without addition of chemical cofactors; this approach has since proven versatile across a variety of preparations. Second, in work stimulated by the finding that the all-trans retinal chromophore required by microbial opsins appears already present within mammalian brains, so that no chemical cofactor need be supplied, we found that neurons targeted to express the light-activated chloride pump halorhodopsin from Natronomonas pharaonis (NpHR) can be hyperpolarized and inhibited from firing action potentials when exposed to yellow light in intact tissue and behaving animals; because of the excitation wavelength difference, the two optical gates can be simultaneously used in the same cells even in vivo5. Third, we employed genomic strategies to discover and adapt for neuroscience a third major optogenetic tool, namely a cation channel (VChR1) with action spectrum significantly redshifted relative to ChR2, to allow tests of the combinatorial interaction of cell types in circuit computation or behavior. Fourth, we have developed genetic targeting tools for versatile use of microbial opsins with existing resources including cell type-specific promoter fragments or Cre-LoxP mouse driver lines suitable for a wide variety of neuroscience investigations. Finally, we have developed integrated fiberoptic and solid-state optical approaches to provide the complementary technology to allow specific cell types, even deep within the brain, to be controlled in freely behaving mammals. Prof. Deisseroth is hosted by the students of the Department of Neurobiology, as a part of the departmental students-invited visiting scientist program.

As Our Brain Is, So We Are

Lecture
Date:
Monday, December 1, 2008
Hour: 12:15
Location:
Arthur and Rochelle Belfer Building for Biomedical Research
Prof. Fred Travis
|
Center for Brain, Consciousness, and Cognition Maharishi University of Management, Fairfield, IA

Brain functioning underlies perception of outer objects and supports behavioral responses to environmental challenges. As brain circuits mature in the first 20 years of life, so mental abilities emerge. This talk will examine the relation between brain maturation—synaptogenesis and myelination— and levels of cognitive, moral, and ego development. Learning disabilities, such as ADHD and reading disabilities will be explored in light of associated brain patterns. Effects of experiences on brain functioning will also be examined including effects of restrictive experiences such as stress, drug use and fatigue, and enhancing experiences, such as Transcendental Meditation practice. High levels of human potential will be discussed in terms of enhanced brain functioning.

Role of dopamine systems in addiction

Lecture
Date:
Wednesday, November 26, 2008
Hour: 12:00
Location:
Nella and Leon Benoziyo Building for Brain Research
Prof. Marco Diana
|
Laboratory of Cognitive Neuroscience Dept of Drug Sciences, University of Sassari, Italy

Dopamine neurons of the VTA, that project to the Nucleus Accumbens, have been involved in the initial rewarding properties of addicting compounds and, more appropriately, in the long-lasting changes observed after chronic drug administration and subsequent withdrawal. Indeed, alcohol, opiates cannabinoids and other substances provoke, upon withdrawal, a drastic and marked reduction of dopaminergic tone. In addition, aversive, non drug-related stimuli also reduce dopaminergic physiological tone. Furthermore, recent human studies reported an attenuated response to methylphenidate in alcoholic subjects and a lower (than controls) dopaminergic tone. These changes are paralleled by a lower number of D2 receptors and suggest a general “impoverishment” of dopamine transmission in the addicted brain. Accordingly, a dopamine deficit correlated with alcohol craving, which was associated with a high relapse risk. Similar results were reported for nicotine withdrawn rats. This hypodopaminergic state could be the target of therapies aimed at restoring the deficient dopamine transmission observed after chronic drug administration in preclinical and clinical investigations.

Interaction between the amygdala and the prefrontal cortex in emotional memory

Lecture
Date:
Tuesday, November 25, 2008
Hour: 12:30
Location:
Jacob Ziskind Building
Dr. Mouna Maroun
|
Department of Neurobiology and Ethology University of Haifa

The amygdala and the medial prefrontal cortex interact to guide emotional behavior. Alterations in the balance between these two structures can lead to persistent fear associations and to the development of anxiety disorders. In this talk I will present work from my laboratory studying the interaction between these two structures in normal conditions and when exposed to a fearful or stressful experience. We have recently found that fear and extinction learning induce differential changes in these two structures that could hint on the mechanisms by which these structures encode memories of fear and safety.

ON THE RELATIONSHIP BETWEEN MOTOR AND PERCEPTUAL BEHAVIOR –

Lecture
Date:
Wednesday, November 12, 2008
Hour: 12:00
Location:
Nella and Leon Benoziyo Building for Brain Research
Dr. Andrei Gorea
|
Laboratoire Psychologie de la Perception CNRS & Paris Descartes University

Starting with Goodale & Milner's (1992) neuropsychological observations, a large number of neuropsychological and psychophysical studies has documented a putative dissociation between perception and action. However, a closer inspection of this literature reveals a number of methodological and conceptual shortcomings. I shall present a series of experiments making use of a variety of psychophysical techniques designed to gauge the relationship between Response Times as well Saccade Perturbations and observers' Perceptual States as assessed for not-masked and masked (metacontrast) stimuli via Yes/No, Temporal Order Judgments and Anticipation Response Times paradigms. All these studies reveal a strong action-perceptual state correlation indicating that motor and perceptual responses are based on a unique internal response. A one-path-two-decisions stochastic race model drawing on standard Signal Detection Theory provides a fair account of some of these data, hence overruling the necessity of a two-paths model of visual processing.

New insights into the hallmarks of obsessive-compulsive disorder (OCD): The prevalence of incompleteness and pessimal behavior

Lecture
Date:
Tuesday, November 11, 2008
Hour: 12:15
Location:
Jacob Ziskind Building
Prof. David Eilam
|
Dept of Zoology, Tel Aviv University

Performance of OCD patients was compared with that of matched normal individuals who were asked to perform the same task that the patients ascribed to their performance. Sequences of consecutive functional acts were long in controls and short in OCD, whereas sequences of non-functional acts were short in controls and long in OCD. Non-functional acts accumulated as a "tail" after the natural termination of the task, supporting the notion of incompleteness as an underling mechanism in OCD. It is suggested that the identified properties are consistent with a recent hypothesis that the individual's attention in OCD shifts from a normal focus on structured actions to a pathological attraction onto the processing of basic acts, a shift that invariably overtaxes memory. Such characteristics and mechanisms of compulsive rituals may prove useful in objective assessment of psychiatric disorders, behavioral therapy, and OCD nosology.

An embedded subnetwork of highly active neurons in the cortex

Lecture
Date:
Wednesday, November 5, 2008
Hour: 14:30
Location:
Arthur and Rochelle Belfer Building for Biomedical Research
Dr. Lina Yassin
|
Dept of Biological Sciences & Center for the Neural Basis of Cognition Carnegie Mellon University, Pittsburgh, PA

In vivo and in vitro, spontaneous and evoked neuronal activity are sparsely distributed across neocortical networks, where only a small subset of cells show firing rates greater than 1 Hz. Understanding the stability, network connectivity, and functional properties of this active subpopulation has been hampered by an inability to identify and characterize these neurons in vitro. Here we use expression of a fosGFP transgene to identify and characterize the properties of cells with a recent history of elevated activity. Neurons that had induced fosGFP expression in vivo maintained elevated firing rates in vitro over the course of many hours. Paired-cell recordings indicated that fosGFP+ neurons have a greater likelihood of being connected to each other, both directly and indirectly. These findings indicate that highly active neuronal ensembles are maintained over long time periods and suggest that specific, identifiable groups of neurons may dominate the way information is represented in the neocortex.

Voltage-Gated Sodium Channels in Neocortical Pyramidal Neurons:

Lecture
Date:
Tuesday, November 4, 2008
Hour: 12:15
Location:
Jacob Ziskind Building
Prof. Mike Gutnick
|
Koret School of Veterinary Medicine The Hebrew University of Jerusalem, Rehovot

CARBOXYPEPTIDASE E: ROLE IN PEPTIDERGIC VESICLE TRANSPORT, NEUROPROTECTION AND CANCER

Lecture
Date:
Tuesday, October 28, 2008
Hour: 12:15
Location:
Jacob Ziskind Building
Dr. Y. Peng Loh
|
Section on Cellular Neurobiology, Program on Developmental Neuroscience, NICHD, NIH, Bethesda

Carboxypeptidase E (CPE) is a prohormone processing enzyme that cleaves C-terminal basic residues from peptide hormone intermediates to yield active hormones, within secretory granules of neuroendocrine cells. A transmembrane form of the enzyme has been shown to be a sorting receptor that sorts prohormones and BDNF at the trans Golgi network and targets them to the regulated secretory pathway. Recently, live cell imaging studies have demonstrated that transport of peptidergic/BDNF secretory vesicles to the release site is dependent upon CPE. The cytoplasmic tail of CPE on the vesicles binds to microtubule motors, KIF1A/KIF3A and dynein via dynactin to effect transport of prohormone/BDNF vesicles in a bidirectional manner from the soma to the process terminals and return. In addition, CPE has been found to play a neuroprotective role in adult brain. In CPE-knockout (KO) mice, degeneration of pyramidal neurons was observed in the hippocampal CA3 region of animals equal or greater than 4 weeks of age, whereas the hippocampus was intact at 3 weeks and younger. Calbindin staining indicated early termination of the mossy fibers before reaching the CA1 region, and a lack of staining of the pyramidal neurons and apical dendritic arborizations in the CA1 region of CPE-KO mice. Ex vivo studies showed that cultured hippocampal neurons transfected with an enzymatically inactive form of CPE were protected against H2O2 oxidative-stress-induced cell death but not in non-transfected or LacZ transfected neurons. Thus CPE has an anti-apoptotic role in the maintenance of survival of adult hippocampal CA3 neurons, although the mechanism of action is unknown. In hepatocellular carcinoma (HCC) cells, overexpression of CPE resulted in enhanced proliferation and migration. SiRNA knockdown of CPE expression in highly metastatic HCC cells inhibited their growth and metastasis in nude mice. These results indicate that CPE is a new mediator of tumor growth and metastasis. Thus CPE is a multi-functional protein which actions include both enzymatic and non-enzymatic to mediate various physiological functions.

Population imaging in vivo: from the awake to the anesthetized

Lecture
Date:
Tuesday, October 7, 2008
Hour: 12:15
Location:
Jacob Ziskind Building
Prof. Jason Kerr
|
Max Planck Institute, Tubingen, Germany

It is unclear how the complex spatiotemporal organization of ongoing cortical neuronal activity recorded in anesthetized animals relates to the awake animal. We therefore used two-photon population calcium imaging in awake and subsequently anesthetized rats to follow action potential firing in populations of neurons across brain states, and examined how single neurons contributed to population activity. Firing rates and spike bursting in awake rats were higher, and pair-wise correlations were lower, compared with anesthetized rats. Anesthesia modulated population-wide synchronization and the relationship between firing rate and correlation. Overall, brain activity during wakefulness cannot be inferred using anesthesia.

Pages

All events, All years

There are no events to display

All events, All years

There are no events to display

Pages