Skip to main content
Open toolbar

Accessibility

Disclaimer
Accessibility arrangements
Faculty of Biology

DEPARTMENT OF BRAIN SCIENCES

Home
  • Home
  • About
  • Members
    • Faculty members
    • Staff Scientists
    • Post-docs
    • PhD
    • MSc Students
    • Staff
    • Administrative Staff
  • Research
    • Neuronal Plasticity, Learning, and Memory
    • Active Sensing and Motor-Sensory Loops
    • Brain Disease, Repair, and Neuroimmunology
    • Theoretical and Computational Neuroscience
    • Decision Making
    • Sensory Processing and Perception
    • Neural Circuits
    • Social Interaction and Group Behavior
    • Stress, Emotions and Neuropsychiatry
    • Neurodevelopment
  • Education
    • Integrated MSc/PhD program in Neuroscience and Brain Sciences
    • Courses at Feinberg Graduate School
  • Events
    • Upcoming
    • Past
  • Photo Gallery
  • Contact

Breadcrumb

  1. Home
  2. Research group
  3. Active Sensing and Motor-Sensory Loops

Research

Research topics

  • Neuronal Plasticity, Learning, and Memory
  • Active Sensing and Motor-Sensory Loops
  • Brain Disease, Repair, and Neuroimmunology
  • Theoretical and Computational Neuroscience
  • Decision Making
  • Sensory Processing and Perception
  • Neural Circuits
  • Social Interaction and Group Behavior
  • Stress, Emotions and Neuropsychiatry
  • Neurodevelopment

Active Sensing and Motor-Sensory Loops

Sensation is usually not passive. Brains acquire information about their environment actively by selecting sensory targets and probing their features. Target selection and feature probing is controlled by the motor components of sensory systems that either move the sensory organ [e.g., eye, hand, tongue or whisker (in rodents)], move the sensed material across it (e.g., sniffing) or emit sensible energy that interacts with the object (e.g., echolocation in bats or electrolocation in electric fish). Thus, during active sensing, motor and sensory components of the same sense modality are intimately related to each other. How these intimate relations are implemented across the multiple neuronal loops connecting motor and sensory stations, how motor-sensory coordination optimizes sensation, and how out of all these perception emerges are exciting open questions.

 

Our department offers a rich and diverse range of research directions on active sensing and motor-sensory loops in a variety of animal systems: bat echolocation, human smelling, vision and touch, and rodent whisker-touch. Based on accumulated experience in these systems, advanced research approaches are employed across several research groups in our department, which enable accurate tracking of the interactions between sensory organs and their environment, detailed recordings and manipulations of the relevant neuronal components at various levels, and quantification of animal behavior.  Combinations of these methods with conceptual theories and mechanistic models allow addressing the challenging, and fascinating questions related to active sensing, aiming at understanding how perception emerges from interactions between brains and environments.

active_sensing

Related Groups

  • Takashi Kawashima
  • Yarden Cohen
  • Noam Sobel
  • Ilan Lampl
  • Rita Schmidt
  • Ephraim Yavin
  • Zvi Vogel
  • Rafi Malach
  • Yitzhak Koch

Weizmann Institute of Science 234 Herzl Street, Rehovot 7610001 Israel Tel: +972-8-934-9106