Dynamic Nuclear Polarization (DNP)
Nuclear magnetic resonance (NMR) has established itself over the last decades as a valuable spectroscopic tool. It is capable of probing the microscopic environment in chemical and biological systems and is a non invasive imaging tool commonly used in the field of medicine and known as MRI. However, the main drawback of NMR and MRI is their inherently low signal to noise ratio (SNR) compared to other type of spectroscopies and imaging techniques. The reason for this is the small energy difference between the nuclear spin states when placed in a magnetic field. This energy difference depends on the magnetic moment of the nuclear spins and on the strength of the external magnetic field. Even with the strongest field currently available (23.5 Tesla), the magnetic energy levels populations, which depend on the temperature according to Boltzmann law, are almost equal at room temperature. This results in only minute population difference, called polarization, measured in parts per million (ppm).