All years
, All years
Rapid learning (and unlearning) in the human brain
Lecture
Thursday, January 19, 2023
Hour: 14:00 - 15:00
Location:
Gerhard M.J. Schmidt Lecture Hall
Rapid learning (and unlearning) in the human brain
Prof. Nitzan Censor
School of Psychological Sciences &
Sagol School of Neuroscience
Tel Aviv University
A plethora of studies have pointed to sensory plasticity in the adult visual system, documenting long-term improvements in perception. Such perceptual learning is enabled by repeated practice, inducing use-dependent plasticity in early visual areas and their readouts. I will discuss results from our lab challenging the fundamental assumption in low-level perceptual learning that only 'practice makes perfect', indicating that brief reactivations of visual memories induce efficient rapid perceptual learning. Utilizing behavioral psychophysics, brain stimulation and neuroimaging, we aim to reveal the neurobehavioral mechanisms by which brief exposure to learned information modulates brain plasticity and supports rapid learning processes. In parallel, we investigate how these learning mechanisms operate across domains, for example by testing the hypothesis that similar inherent mechanisms may also result in maladaptive consequences, when brief reactivations occur spontaneously as intrusive enhanced memories following negative events. Unraveling the mechanisms of this new form of rapid learning could set the foundations to enhance learning in daily life when beneficial, and to downregulate maladaptive consequences of negative memories.
Is behaviour a developmental trait?
Lecture
Wednesday, January 11, 2023
Hour: 10:00 - 11:00
Location:
Arthur and Rochelle Belfer Building for Biomedical Research
Is behaviour a developmental trait?
Prof. Gil Levkowitz
Departments of Molecular Cell Biology
and Molecular Neuroscience
Capturing Neuronal Activity with more Precision and Fidelity in Time and Space
Lecture
Tuesday, January 10, 2023
Hour: 12:30 - 13:30
Location:
Gerhard M.J. Schmidt Lecture Hall
Capturing Neuronal Activity with more Precision and Fidelity in Time and Space
Dr. Peter Bandettini
Laboratory of Brain and Cognition
NIMH Bethesda MD
My lab’s focus in recent years has been split between development of ultra-high resolution fMRI at high field and the exploration of more sensitive yet robust methods to find all the salient transients and trends in the signal. High field, high resolution fMRI relies heavily on the acquisition technology and the functional contrast used as well as unique processing approaches that segment, as well as possible, cortical layers for analysis. Our fMRI time series analysis research relies on creative paradigm design in conjunction with tailored processing methods that strike a balance between casting a wide net for potentially informative signals and applying just enough modeling to make sense of the data. Our goal is to use fMRI to see neuronal activity and capture neural correlates of behavior that have previously been elusive to more standard approaches.
Specifically, for our high resolution fMRI work, I will describe experiments demonstrating layer-specific activity in motor, somatosensory, and visual cortex that changes with tasks that modulate the hypothesized input and output cortical communication. In our lab, we perform layer fMRI using a functional contrast called VASO (vascular space occupancy) that is sensitive to blood volume changes in micro vessels - having more specificity than BOLD with only a small tradeoff in sensitivity. Layer fMRI has the potential to provide cortical hierarchy information and communication directionality based on the understanding that feedforward connections terminate predominantly in middle layers and feedback connections terminate in predominantly upper and lower layers. Hence by determining activation location across cortical depth, one can infer whether the activation is feedforward or feedback. I will also demonstrate how the use of resting state connectivity in conjunction with layer fMRI is able to discern such cortical hierarchy in visual areas. Lastly, I will also show examples of applications of layer fMRI in frontal cortex during a working memory task. In addition, I will show our high resolution fMRI work that has allowed us to discern a new digit organizational pattern in motor cortex.
For our time series work, I will show our recent results in using connectivity-based decoding for identifying, in an unsupervised manner, tasks being performed. In addition, I will show an application of naturalistic stimuli and inter subject correlation to characterize personality trait and language skills of individuals. Lastly, changes arousal state during scanning has been viewed as both a confound and opportunity. I demonstrate our effort to further characterize the temporal and spatial signatures of arousal state changes in fMRI time series.
Latent cause inference in learning and decision making
Lecture
Tuesday, January 3, 2023
Hour: 12:30 - 13:30
Location:
Gerhard M.J. Schmidt Lecture Hall
Latent cause inference in learning and decision making
Prof. Yael Niv
Neuroscience Institute and Psychology Department
Princeton University
No two events are alike. But still, we learn, which means that we implicitly decide what events are similar enough that experience with one can inform us about what to do in another. We have suggested that this relies on parsing of incoming information into “clusters” according to inferred hidden (latent) causes. In this talk, I will present a computational model of this latent-cause inference process, and show supporting data from a variety of behavioral experiments in humans and rodents spanning from simple conditioning to memory to social decision making. I will also briefly discuss the relevance of this theory to mental health treatments.
Renewal and plasticity in oral and gastrointestinal epithelia
Lecture
Monday, January 2, 2023
Hour: 11:15 - 12:15
Location:
Arthur and Rochelle Belfer Building for Biomedical Research
Renewal and plasticity in oral and gastrointestinal epithelia
Prof. Ophir Klein
Executive Director of Cedars-Sinai Guerin Children's
Vice Dean for Children’s Services
David and Meredith Kaplan Distinguished Chair in Children’s Health
Professor of Orofacial Sciences and Pediatrics, UC San Francisco
How movement regulates defensive behaviours in a social context
Lecture
Tuesday, December 13, 2022
Hour: 12:30
Location:
Gerhard M.J. Schmidt Lecture Hall
How movement regulates defensive behaviours in a social context
Prof. Marta Moita
Behavioural Neuroscience
Champalimaud Center, Lisbon
Our work concerns the general problem of adaptive behavior in response to predatory threats, and of the neural mechanisms underlying a choice between strategies. Interacting predators and prey tightly regulate their motion, timing with precision when to hold, attack or escape. Motion cues are thus paramount in these interactions. Speed and (un)predictability have shaped the evolution of sensory and motor systems, the elucidation of which a great deal of research has been devoted. Much less attention has been paid to the role of motion as a social cue of threat or safety. We and others have found that prey animals use the movement of their neighbors to regulate their defensive responses. We have studied social regulation of freezing in rodents and found that rats use cessation of movement evoked sound, resulting from freezing, as a cue of danger. In addition, auto-conditioning, whereby rats learn the association between shock and their own freezing, during prior experience with shock, facilitates the use of freezing by others as an alarm cue. To further explore the social regulation of defensive responses we resorted to the use fruit flies as it easily allows testing of groups of varying sizes, the collection of large data sets and genetic access to individual neuronal types. We established that fruit flies in response to visual looming stimuli, simulating a large object on collision course, make rapid freeze/flee choices accompanied by lasting changes in the fly’s internal state, reflected in altered cardiac activity. Freezing in flies is also strongly modulated by the movement of surrounding neighbours. In contrast with rodents that use auditory cues, female flies use visual motion processed by visual projection neurons. Finally, I will discuss more preliminary findings suggesting that there are multiple states of freezing as measured by muscle activity in the fly legs. Having established the fly as a model to study freezing/fleeing decisions, we are in a great position to perform large scale integrative studies on the organization of defensive behaviours.
Short Bio
Marta Moita received her BSc degree in Biology at the University of Lisbon, in 1995. As part of Gulbenkian’s PhD programme in Biology and Medicine she developed her thesis work, on the encoding by place cells of threat conditioning under the supervision of Prof. Joseph Ledoux, at the New York University (1997-2002). In 2002, Marta Moita worked as a postdoctoral fellow in Dr. Tony Zador’s laboratory, at the Cold Spring Harbor Laboratory, to study the role of auditory cortex in sound discrimination. In 2004, she became a principal investigator, leading the Behavioral Neuroscience lab, at the Instituto Gulbenkian de Ciência. In 2008 her group joined the starting Champalimaud Neuroscience program. In 2018 and 2019 Marta Moita served as Deputy Director of Champalimaud Research. Her lab is primarily interested in understanding the mechanisms of behavior. To this end, the lab has focused on behaviors that are crucial for survival and present in a wide range of species, namely defensive behaviors triggered by external threats. Using a combination of state-of-the-art tools in Neuroscience (initially using rats and currently using fruit flies) and detailed quantitative descriptions of behavior, her lab aims to understand how contextual cues guide the selection between different defensive strategies and how the chosen defensive behavior and accompanying physiological responses are instantiated.
Deciphering non-neuronal cells contribution to Alzheimer’s disease pathology using high throughput transcriptomic and proteomic methods
Lecture
Wednesday, November 30, 2022
Hour: 14:00 - 15:00
Location:
Deciphering non-neuronal cells contribution to Alzheimer’s disease pathology using high throughput transcriptomic and proteomic methods
Sedi Medina (PhD Thesis Defense Seminar) on Zoom
Alzheimer's disease (AD) is a devastating pathology of the central nervous system (CNS) of unknown etiology which represents the most common neurodegenerative disorder. For decades, AD was perceived as a disease of the neuron alone. However, research advances in recent years have challenged this concept and shed light on the critical roles of non-neuronal cells on the development and progression of AD. In my PhD, I focused on understanding how two non-neuronal cell types - the Astrocytes and Microglia - respond to AD and how they possibly affect pathological processes. Our research identified a unique population of Astrocytes that significantly increased in association with brain pathology, which we termed disease-associated astrocytes (DAAs). This novel population of DAAs appeared at an early disease stage, increased in abundance with disease progression, and was not observed in young or in healthy adult animals. In addition, similar astrocytes appeared in aged wild-type (WT) mice and in aging human brains, suggesting their linkage to genetic and age-related factors. Aging is considered the greatest risk factor for AD, although the mechanism underlying the aging-related susceptibility to AD is unknown. One emerging factor that is involved in biological aging is the accumulation of senescent cells. Cellular senescence is a process in which aging cells change their characteristic phenotype. Under physiological conditions senescent cells can be removed by the immune system, however with aging, senescent cells accumulate in tissues, either due to a failure of effective removal or due to the accelerated formation of senescent cells.
Our data highlight the contribution of non neuronal cells to AD pathogenesis by demonstrating that 1. Overexpression of a specific gene by astrocytes affected the microglia cells' state, leading to a more homeostatic and less reactive microglial phenotype in comparison to the control group. 2. Accumulation of senescent microglia cells was observed in the brain of aged WT mice and AD mouse model (5xFAD), and by applying different therapeutic strategies we managed to observe significant quantitative differences in these cells, followed by a cognitive amelioration.
Organization of long-term behavior and individuality across developmental timescales
Lecture
Tuesday, November 29, 2022
Hour: 12:30
Location:
Gerhard M.J. Schmidt Lecture Hall
Organization of long-term behavior and individuality across developmental timescales
Prof. Shay Stern
Faculty of Biology TECHNION Haifa
Animals generate complex patterns of behavior across life that can be modified over days, months, or even years. Across these long timescales individuals within the same population may show stereotyped behaviors, but also unique behaviors that distinguish them from each other. How are long-term patterns of behavior organized and regulated across development? And what are the underlying processes that establish and modify individual-to-individual behavioral variation?
By utilizing parallel long-term behavioral monitoring at high spatiotemporal resolution of multiple C. elegans individuals across their complete development time we demonstrate temporal regulation of behavioral plasticity by neuromodulators across developmental stages, structuring shared and unique individual responses to early-life experiences. I will further describe our development of unsupervised analyses of individual biases across development based on locomotion trajectory and individual postures which uncovered a large spectrum of individuality types within the isogenic populations. Lastly, I will present preliminary results suggesting that specific neuronal pathways are required to robustly synchronize long-term behavior with development time.
Molecular maps for odor processing in the mouse olfactory system
Lecture
Tuesday, November 22, 2022
Hour: 12:30 - 13:30
Location:
Gerhard M.J. Schmidt Lecture Hall
Molecular maps for odor processing in the mouse olfactory system
Prof. Alexander Fleischmann
Brown University, Providence, USA
We are interested in the organization and function of neural circuits for sensory processing and behavior. A main goal of the lab is to integrate complementary approaches of system interrogation: we study the molecular diversity of cell types, their connectivity and functional properties; we investigate network dynamics and core computational principles; and we explore how learning and experience shapes behavioral decisions.
I will discuss ongoing work aimed at characterizing molecular maps for odor processing in the mouse olfactory bulb. I will present preliminary data using spatial transcriptomics to generate a comprehensive map of glomerular identity and domain structure of the olfactory bulb. Furthermore, I will discuss single cell sequencing experiments and gene regulatory network models that define the diversity and connectivity of olfactory bulb projection neurons.
I will try to illustrate how the early olfactory system of mice provides an ideal model system to integrate molecular biology, functional imaging, and behavioral experiments to address fundamental questions in sensory processing and behavior.
Skeletal muscle differentiation and fusion across scales
Lecture
Wednesday, November 9, 2022
Hour: 10:00 - 11:00
Location:
Arthur and Rochelle Belfer Building for Biomedical Research
Skeletal muscle differentiation and fusion across scales
Dr. Ori Avinoam
Dept of Biomolecular Sciences
Pages
All years
, All years
Rapid learning (and unlearning) in the human brain
Lecture
Thursday, January 19, 2023
Hour: 14:00 - 15:00
Location:
Gerhard M.J. Schmidt Lecture Hall
Rapid learning (and unlearning) in the human brain
Prof. Nitzan Censor
School of Psychological Sciences &
Sagol School of Neuroscience
Tel Aviv University
A plethora of studies have pointed to sensory plasticity in the adult visual system, documenting long-term improvements in perception. Such perceptual learning is enabled by repeated practice, inducing use-dependent plasticity in early visual areas and their readouts. I will discuss results from our lab challenging the fundamental assumption in low-level perceptual learning that only 'practice makes perfect', indicating that brief reactivations of visual memories induce efficient rapid perceptual learning. Utilizing behavioral psychophysics, brain stimulation and neuroimaging, we aim to reveal the neurobehavioral mechanisms by which brief exposure to learned information modulates brain plasticity and supports rapid learning processes. In parallel, we investigate how these learning mechanisms operate across domains, for example by testing the hypothesis that similar inherent mechanisms may also result in maladaptive consequences, when brief reactivations occur spontaneously as intrusive enhanced memories following negative events. Unraveling the mechanisms of this new form of rapid learning could set the foundations to enhance learning in daily life when beneficial, and to downregulate maladaptive consequences of negative memories.
Is behaviour a developmental trait?
Lecture
Wednesday, January 11, 2023
Hour: 10:00 - 11:00
Location:
Arthur and Rochelle Belfer Building for Biomedical Research
Is behaviour a developmental trait?
Prof. Gil Levkowitz
Departments of Molecular Cell Biology
and Molecular Neuroscience
Capturing Neuronal Activity with more Precision and Fidelity in Time and Space
Lecture
Tuesday, January 10, 2023
Hour: 12:30 - 13:30
Location:
Gerhard M.J. Schmidt Lecture Hall
Capturing Neuronal Activity with more Precision and Fidelity in Time and Space
Dr. Peter Bandettini
Laboratory of Brain and Cognition
NIMH Bethesda MD
My lab’s focus in recent years has been split between development of ultra-high resolution fMRI at high field and the exploration of more sensitive yet robust methods to find all the salient transients and trends in the signal. High field, high resolution fMRI relies heavily on the acquisition technology and the functional contrast used as well as unique processing approaches that segment, as well as possible, cortical layers for analysis. Our fMRI time series analysis research relies on creative paradigm design in conjunction with tailored processing methods that strike a balance between casting a wide net for potentially informative signals and applying just enough modeling to make sense of the data. Our goal is to use fMRI to see neuronal activity and capture neural correlates of behavior that have previously been elusive to more standard approaches.
Specifically, for our high resolution fMRI work, I will describe experiments demonstrating layer-specific activity in motor, somatosensory, and visual cortex that changes with tasks that modulate the hypothesized input and output cortical communication. In our lab, we perform layer fMRI using a functional contrast called VASO (vascular space occupancy) that is sensitive to blood volume changes in micro vessels - having more specificity than BOLD with only a small tradeoff in sensitivity. Layer fMRI has the potential to provide cortical hierarchy information and communication directionality based on the understanding that feedforward connections terminate predominantly in middle layers and feedback connections terminate in predominantly upper and lower layers. Hence by determining activation location across cortical depth, one can infer whether the activation is feedforward or feedback. I will also demonstrate how the use of resting state connectivity in conjunction with layer fMRI is able to discern such cortical hierarchy in visual areas. Lastly, I will also show examples of applications of layer fMRI in frontal cortex during a working memory task. In addition, I will show our high resolution fMRI work that has allowed us to discern a new digit organizational pattern in motor cortex.
For our time series work, I will show our recent results in using connectivity-based decoding for identifying, in an unsupervised manner, tasks being performed. In addition, I will show an application of naturalistic stimuli and inter subject correlation to characterize personality trait and language skills of individuals. Lastly, changes arousal state during scanning has been viewed as both a confound and opportunity. I demonstrate our effort to further characterize the temporal and spatial signatures of arousal state changes in fMRI time series.
Latent cause inference in learning and decision making
Lecture
Tuesday, January 3, 2023
Hour: 12:30 - 13:30
Location:
Gerhard M.J. Schmidt Lecture Hall
Latent cause inference in learning and decision making
Prof. Yael Niv
Neuroscience Institute and Psychology Department
Princeton University
No two events are alike. But still, we learn, which means that we implicitly decide what events are similar enough that experience with one can inform us about what to do in another. We have suggested that this relies on parsing of incoming information into “clusters” according to inferred hidden (latent) causes. In this talk, I will present a computational model of this latent-cause inference process, and show supporting data from a variety of behavioral experiments in humans and rodents spanning from simple conditioning to memory to social decision making. I will also briefly discuss the relevance of this theory to mental health treatments.
Renewal and plasticity in oral and gastrointestinal epithelia
Lecture
Monday, January 2, 2023
Hour: 11:15 - 12:15
Location:
Arthur and Rochelle Belfer Building for Biomedical Research
Renewal and plasticity in oral and gastrointestinal epithelia
Prof. Ophir Klein
Executive Director of Cedars-Sinai Guerin Children's
Vice Dean for Children’s Services
David and Meredith Kaplan Distinguished Chair in Children’s Health
Professor of Orofacial Sciences and Pediatrics, UC San Francisco
How movement regulates defensive behaviours in a social context
Lecture
Tuesday, December 13, 2022
Hour: 12:30
Location:
Gerhard M.J. Schmidt Lecture Hall
How movement regulates defensive behaviours in a social context
Prof. Marta Moita
Behavioural Neuroscience
Champalimaud Center, Lisbon
Our work concerns the general problem of adaptive behavior in response to predatory threats, and of the neural mechanisms underlying a choice between strategies. Interacting predators and prey tightly regulate their motion, timing with precision when to hold, attack or escape. Motion cues are thus paramount in these interactions. Speed and (un)predictability have shaped the evolution of sensory and motor systems, the elucidation of which a great deal of research has been devoted. Much less attention has been paid to the role of motion as a social cue of threat or safety. We and others have found that prey animals use the movement of their neighbors to regulate their defensive responses. We have studied social regulation of freezing in rodents and found that rats use cessation of movement evoked sound, resulting from freezing, as a cue of danger. In addition, auto-conditioning, whereby rats learn the association between shock and their own freezing, during prior experience with shock, facilitates the use of freezing by others as an alarm cue. To further explore the social regulation of defensive responses we resorted to the use fruit flies as it easily allows testing of groups of varying sizes, the collection of large data sets and genetic access to individual neuronal types. We established that fruit flies in response to visual looming stimuli, simulating a large object on collision course, make rapid freeze/flee choices accompanied by lasting changes in the fly’s internal state, reflected in altered cardiac activity. Freezing in flies is also strongly modulated by the movement of surrounding neighbours. In contrast with rodents that use auditory cues, female flies use visual motion processed by visual projection neurons. Finally, I will discuss more preliminary findings suggesting that there are multiple states of freezing as measured by muscle activity in the fly legs. Having established the fly as a model to study freezing/fleeing decisions, we are in a great position to perform large scale integrative studies on the organization of defensive behaviours.
Short Bio
Marta Moita received her BSc degree in Biology at the University of Lisbon, in 1995. As part of Gulbenkian’s PhD programme in Biology and Medicine she developed her thesis work, on the encoding by place cells of threat conditioning under the supervision of Prof. Joseph Ledoux, at the New York University (1997-2002). In 2002, Marta Moita worked as a postdoctoral fellow in Dr. Tony Zador’s laboratory, at the Cold Spring Harbor Laboratory, to study the role of auditory cortex in sound discrimination. In 2004, she became a principal investigator, leading the Behavioral Neuroscience lab, at the Instituto Gulbenkian de Ciência. In 2008 her group joined the starting Champalimaud Neuroscience program. In 2018 and 2019 Marta Moita served as Deputy Director of Champalimaud Research. Her lab is primarily interested in understanding the mechanisms of behavior. To this end, the lab has focused on behaviors that are crucial for survival and present in a wide range of species, namely defensive behaviors triggered by external threats. Using a combination of state-of-the-art tools in Neuroscience (initially using rats and currently using fruit flies) and detailed quantitative descriptions of behavior, her lab aims to understand how contextual cues guide the selection between different defensive strategies and how the chosen defensive behavior and accompanying physiological responses are instantiated.
Deciphering non-neuronal cells contribution to Alzheimer’s disease pathology using high throughput transcriptomic and proteomic methods
Lecture
Wednesday, November 30, 2022
Hour: 14:00 - 15:00
Location:
Deciphering non-neuronal cells contribution to Alzheimer’s disease pathology using high throughput transcriptomic and proteomic methods
Sedi Medina (PhD Thesis Defense Seminar) on Zoom
Alzheimer's disease (AD) is a devastating pathology of the central nervous system (CNS) of unknown etiology which represents the most common neurodegenerative disorder. For decades, AD was perceived as a disease of the neuron alone. However, research advances in recent years have challenged this concept and shed light on the critical roles of non-neuronal cells on the development and progression of AD. In my PhD, I focused on understanding how two non-neuronal cell types - the Astrocytes and Microglia - respond to AD and how they possibly affect pathological processes. Our research identified a unique population of Astrocytes that significantly increased in association with brain pathology, which we termed disease-associated astrocytes (DAAs). This novel population of DAAs appeared at an early disease stage, increased in abundance with disease progression, and was not observed in young or in healthy adult animals. In addition, similar astrocytes appeared in aged wild-type (WT) mice and in aging human brains, suggesting their linkage to genetic and age-related factors. Aging is considered the greatest risk factor for AD, although the mechanism underlying the aging-related susceptibility to AD is unknown. One emerging factor that is involved in biological aging is the accumulation of senescent cells. Cellular senescence is a process in which aging cells change their characteristic phenotype. Under physiological conditions senescent cells can be removed by the immune system, however with aging, senescent cells accumulate in tissues, either due to a failure of effective removal or due to the accelerated formation of senescent cells.
Our data highlight the contribution of non neuronal cells to AD pathogenesis by demonstrating that 1. Overexpression of a specific gene by astrocytes affected the microglia cells' state, leading to a more homeostatic and less reactive microglial phenotype in comparison to the control group. 2. Accumulation of senescent microglia cells was observed in the brain of aged WT mice and AD mouse model (5xFAD), and by applying different therapeutic strategies we managed to observe significant quantitative differences in these cells, followed by a cognitive amelioration.
Organization of long-term behavior and individuality across developmental timescales
Lecture
Tuesday, November 29, 2022
Hour: 12:30
Location:
Gerhard M.J. Schmidt Lecture Hall
Organization of long-term behavior and individuality across developmental timescales
Prof. Shay Stern
Faculty of Biology TECHNION Haifa
Animals generate complex patterns of behavior across life that can be modified over days, months, or even years. Across these long timescales individuals within the same population may show stereotyped behaviors, but also unique behaviors that distinguish them from each other. How are long-term patterns of behavior organized and regulated across development? And what are the underlying processes that establish and modify individual-to-individual behavioral variation?
By utilizing parallel long-term behavioral monitoring at high spatiotemporal resolution of multiple C. elegans individuals across their complete development time we demonstrate temporal regulation of behavioral plasticity by neuromodulators across developmental stages, structuring shared and unique individual responses to early-life experiences. I will further describe our development of unsupervised analyses of individual biases across development based on locomotion trajectory and individual postures which uncovered a large spectrum of individuality types within the isogenic populations. Lastly, I will present preliminary results suggesting that specific neuronal pathways are required to robustly synchronize long-term behavior with development time.
Molecular maps for odor processing in the mouse olfactory system
Lecture
Tuesday, November 22, 2022
Hour: 12:30 - 13:30
Location:
Gerhard M.J. Schmidt Lecture Hall
Molecular maps for odor processing in the mouse olfactory system
Prof. Alexander Fleischmann
Brown University, Providence, USA
We are interested in the organization and function of neural circuits for sensory processing and behavior. A main goal of the lab is to integrate complementary approaches of system interrogation: we study the molecular diversity of cell types, their connectivity and functional properties; we investigate network dynamics and core computational principles; and we explore how learning and experience shapes behavioral decisions.
I will discuss ongoing work aimed at characterizing molecular maps for odor processing in the mouse olfactory bulb. I will present preliminary data using spatial transcriptomics to generate a comprehensive map of glomerular identity and domain structure of the olfactory bulb. Furthermore, I will discuss single cell sequencing experiments and gene regulatory network models that define the diversity and connectivity of olfactory bulb projection neurons.
I will try to illustrate how the early olfactory system of mice provides an ideal model system to integrate molecular biology, functional imaging, and behavioral experiments to address fundamental questions in sensory processing and behavior.
Skeletal muscle differentiation and fusion across scales
Lecture
Wednesday, November 9, 2022
Hour: 10:00 - 11:00
Location:
Arthur and Rochelle Belfer Building for Biomedical Research
Skeletal muscle differentiation and fusion across scales
Dr. Ori Avinoam
Dept of Biomolecular Sciences
Pages
All years
, All years
There are no events to display