All events, 2015

Figure-ground segregation of smells

Lecture
Date:
Monday, January 12, 2015
Hour: 14:30
Location:
Gerhard M.J. Schmidt Lecture Hall
Dr. Dan Rokni
|
Dept. of Molecular and Cellular Biology Harvard University Cambridge, MA

Sensory stimuli in natural environments arise from many sources and the segregation of these sources into perceptually distinct objects is critical for an animal’s adaptive behavior. While segregation of visual and auditory signals has been studied extensively, little is known about the segregation of odors. I will describe our study aiming to provide a description of the behavioral ability of macrosmatic mammals to segregate odors. Specifically, we asked how the ability to segregate odors relates to features of the individual odors that are mixed. We developed a behavioral task for mice in which they were trained to report the presence of specific target odorants embedded in random background mixtures. We found that mice are highly capable of segregating an odor-figure from a background. Relating behavioral accuracy to the representations of target and background odors by olfactory receptor neurons, we found that the difficulty of segregation is not related to the similarity between odors, but rather is explained by the amount of overlap in the representations of background and target odors.

Regulation of excitatory-inhibitory balance in cortical circuits by sensory-induced gene programs

Lecture
Date:
Sunday, January 4, 2015
Hour: 14:30
Location:
Gerhard M.J. Schmidt Lecture Hall
Dr. Ivo Spiegel
|
Dept of Neurobiology, Harvard Medical School, Boston, MA

Abstract: The ability to adapt to and learn from sensory experiences is crucial for an animal’s survival and underlies many of our cognitive capabilities, and a central question in neurobiology thus concerns the place within a neural circuit where these adaptions happen and the molecular mechanisms that mediate them. Neural circuits in the neocortex adapt to sensory experience by the induction of genes that function at synaptic sites to regulate circuit activity and to maintain the balance between excitation and inhibition (E/I balance). While the molecular mechanisms associated with the modulation of specific synapses has been studied extensively in excitatory neurons, far less is known about how sensory experience regulates synaptic inputs to inhibitory neurons and how these mechanisms might regulate E/I-balance in cortical circuits. In my talk, I will discuss our recent findings regarding the nature of the gene programs that are induced by sensory experience in cortical inhibitory neurons and the molecular mechanisms through which these gene programs modulate specific synaptic inputs to functionally distinct inhibitory neuron subtypes and thereby regulate E/I-balance within cortical circuits. Our experiments reveal that experience-induced gene programs in cortical neurons are far more subtype-specific than previously appreciated and that these gene programs are adapted to the function of each neuronal subtype within the circuit in a manner that mediates circuit homeostasis and plasticity in the neocortex.

Pages

All events, 2015

There are no events to display

Pages

All events, 2015

There are no events to display

All events, 2015

There are no events to display