All events, 2018

Pluripotent models for neurodegenerative diseases

Lecture
Date:
Tuesday, June 12, 2018
Hour: 12:30
Location:
Gerhard M.J. Schmidt Lecture Hall
Prof. Eran Meshorer
|
Department of Genetics, The Institute of Life Sciences and The Edmond and Lily Safra Centre for Brain Sciences The Hebrew University of Jerusalem

Enhanced capacity and dynamic gating in a model of context-dependent associative memory

Lecture
Date:
Thursday, May 31, 2018
Hour: 12:00 - 13:00
Location:
Nella and Leon Benoziyo Building for Brain Research
Bill Podlaski
|
Centre for Neural Circuits and Behaviour University of Oxford

An increasing amount of evidence suggests that memory formation and retrieval are modulated by contextual signals, such as behavioral or emotional state. However, typical models of associative memory do not incorporate this dependency. Here we propose an extension to the Hopfield network which takes into account contextual modulation. The network is divided into a set of overlapping subnetworks, each representing a different context with a separate set of memory patterns. Only one subnetwork is active at any given time, thereby reducing interference from memories found in other contexts, which remain dormant through inhibitory control. Using theoretical and numerical methods, we show that these context-modular Hopfield networks have substantially increased memory capacity, as well as robustness to noise and to memory overloading. Their performance depends on two parameters—the number of subnetworks, and their relative size—and when chosen optimally, the capacity is up to ten times greater than the standard Hopfield model. We then show that adding context-dependent dendritic pruning further enhances the performance of the model. Improved performance comes at the cost of limited retrieval, because only memories stored in the active subnetwork can be recalled. To address this, we propose a system in which a controller network dynamically switches the memory network to a desired contextual state before storage or retrieval. Through simulations, we successfully show that this system is able to bias memory retrieval based on context. Overall, our work illustrates the benefits of context-dependent memory, and may have implications for our understanding of cortical memories and their interaction with contextual signals in the prefrontal cortex and hippocampus.

Synaptic and extrasynaptic neuron-glia interactions

Lecture
Date:
Tuesday, May 29, 2018
Hour: 12:30 - 13:30
Location:
Gerhard M.J. Schmidt Lecture Hall
Prof. Alexey Semyanov
|
Institute of Neuroscience University of Nizhny Novgorod, Russia

Brain is often viewed as large neuronal connectome where the information is encoded in the patterns of action potentials and stored in the changes of synaptic strength or appearance of new wiring routes. However, recent studies have demonstrated that astrocytes also possess complex patterns of calcium signals influenced by neuronal activity. Astrocytic calcium signals regulate various functions of these cells including release of gliotransmitters and morphological changes in the astrocytic processes (Tanaka et al., 2013). It has been tempting to suggest that information in astrocytes is encoded in the frequency of calcium events, similar to patters of neuronal action potentials. Synaptically released neurotransmitters thought to trigger new calcium events in perisynaptic astrocytic processes (PAPs) though activation of metabotropic glutamate receptors (mGluRs). In contrast, our recent findings suggest that PAPs are devoid of calcium stores that are required for mGluR-mediated calcium signaling (Patrushev et al., 2013). This makes unlikely any significant role of mGluRs in triggering calcium events in PAPs. Instead, we show that activation of ‘extrasynaptic’ astrocytic mGluRs increases proportion of spatially extended calcium events in the power-law based distribution of calcium event sizes (Wu et al., 2014). This effect takes place without any significant increase in the frequency of calcium events. These findings suggest that astrocytic response to surrounding neuronal activity is rather encoded in spatial characteristics of their calcium events and fundamentally different from temporal information coding in neurons (e.g. coincidence detection, action potentials sequences etc). Nevertheless, we cannot exclude local ionic changes in PAPs in response to synaptic activity. For example, potassium ions accumulate in the synaptic cleft of glutamatergic synapses during repetitive activity. We have demonstrated that the bulk of these ions is contributed by potassium efflux through postsynaptic NMDA receptors (Shih et al., 2013). Potassium mediated depolarization of presynaptic terminal increases glutamate release probability. Now we have found that accumulation of intracleft potassium during repetitive synaptic activity could also inhibit astrocytic glutamate uptake by depolarizing PAPs. This extends glutamate dwell-time in the synaptic cleft and boosts glutamate spillover effects.

From dragons’ sleep to sliders’ sight: reexamination of reptilian model systems

Lecture
Date:
Monday, May 28, 2018
Hour: 12:30
Location:
Gerhard M.J. Schmidt Lecture Hall
Dr. Mark Shein-Idelson
|
Dept of Neurobiology Faculty of Life Sciences Sagol School for Neuroscience Tel Aviv University

Throughout the history of neuroscience, a large set of model systems has been used for studying a large variety of questions. These model systems were frequently chosen for their unique experimental advantages, but studying them also provided a wider perspective on basic questions: By examining the manifestation of a given biological phenomenon across different species, one could separate the salient or fundamental from the transient or variable. In my talk I will focus on two of our studies in reptiles: sleep in bearded dragons and visual processing in red eared sliders. I will show how we can use turtles for understanding structure function relations in neural circuits and how we can use lizards for exploring the organization of collective activity during sleep. In addition, I will show that such studies provide a new u! nderstanding of the evolution of brain dynamics.

Synaptic dynamics in mouse visual cortex

Lecture
Date:
Tuesday, May 15, 2018
Hour: 12:30
Location:
Gerhard M.J. Schmidt Lecture Hall
Dr. Tara Keck
|
University College London

Homeostatic synaptic scaling is thought to occur cell-wide, but recent evidence suggests this form of stabilizing plasticity can be implemented more locally in reduced preparations. To investigate the spatial scales of plasticity in vivo, we used repeated two-photon imaging in mouse visual cortex after sensory deprivation to measure TNF-α dependent increases in spine size as a proxy for synaptic scaling in vivo in both excitatory and inhibitory neurons. We found that after sensory deprivation, increases in spine size are restricted to a subset of dendritic branches, which we confirmed using immunohistochemistry. We found that the dendritic branches that had individual spines that increased in size following deprivation, also underwent a decrease in spine density. Within a given dendritic branch, the degree of spine size increases is proportional to recent spine loss within that branch. Using computational simulations, we show that this compartmentalized form of synaptic scaling better retained the previously established input-output relationship in the cell, while restoring activity levels. We then investigated the relationship between new spines that form after this spine loss and strengthening and find that their spatial positioning facilitates strengthening of maintained synapses.

In vivo identification of brain structures functionally involved in spatial learning and strategy switch

Lecture
Date:
Sunday, May 13, 2018
Hour: 10:00
Location:
Nella and Leon Benoziyo Building for Brain Research
Dr. Suellen DeAlmeida-Correa
|
Visiting Postdoc, Dept of Stress Neurobiology and Neurogenetics Max Planck Institute of Psychiatry, Munich

Spatial learning is a complex behavior which includes, among others, encoding of space, sensory and motivational processes, arousal and locomotor performance. Today, our view on spatial navigation is largely hippocampus-centrist. Less is known about the involvement of brain structures up- and downstream, or out of this circuit. Here, we provide the fist in vivo assessment of the neural matrix underlying spatial learning, using functional manganese-enhanced MRI (MEMRI) and voxel-wise whole brain analysis. Mice underwent place-learning (PL) vs. response-learning (RL) in the water cross maze (WCM) and its readout was correlated to the Mn2+ contrasts. Thus, we identified structures involved in spatial learning largely overlooked in the past, due to methods focused on region of interest (ROI) analyses. Add-on experiments pointed to bias in Mn2+ accumulati! on towards projection terminals, suggesting that our mapping was mostly formed by projection sites of the originally activated structures. This is corroborated by in-depth analysis of MEMRI data after WCM learning showing mostly downstream targets of the hippocampus. These differ between fornical afferences from vCA1 and direct innervation from dCA1/iCA1 (for PL), and structures along the longitudinal association bundle originating in vCA1 (for RL). To elucidate the pattern of Mn2+ accumulation seen on the scans we performed c-fos expression analyses following learning in the WCM. This helped us identify the structures initially activated during spatial learning and its underlying connectivity to establish the matrix. Finally, to test the causal involvement of these structures we inhibited them (through DREADDs) while mice performed in the WCM task. We also focused on the causal involvement of the mPFC-HPC circuit on strategy switch during WCM learning. We believe that this study might shed light into new brain structures involved in spatial learning and strategy switch and complement the current knowledge on these circuits’ connectivity. Moreover, we elucidated some functional mechanisms of MEMRI, clarifying the interpretation of data obtained with this method and its possible future applications.

Advanced Optical Materials in the Mirrored Eyes of Animals

Lecture
Date:
Tuesday, May 8, 2018
Hour: 12:30
Location:
Gerhard M.J. Schmidt Lecture Hall
Dr. Benjamin Palmer
|
Department of Structural Biology, WIS

Some animals, especially those living under water use mirrors rather than lenses to form images. Two general strategies exist in nature for forming images using mirrors, exemplified by the concave mirrored eyes of the scallop1 and the reflecting compound eyes of crustaceans2. Here we discuss these two remarkable visual systems and show how the whole hierarchical organization of the mirrors are exquisitely controlled for image-formation from the structure and morphology of the substituent reflecting crystals at the nanoscale to the overall shape of the mirrors at the millimeter scale. Based on our understanding of the optics and structure we can predict what the animal should be seeing. Whether the neural system can integrate all this information, has yet to be determined. From a materials science perspective, understanding how organisms exert such extraord! inary control over the formation and organization of organic crystals provides inspiration for the development of new organic crystalline materials with rationally designed morphologies and properties. 1B.A. Palmer*, G.J. Taylor, V. Brumfeld, D. Gur, M. Shemesh, N. Elad, A. Osherov, D. Oron, S. Weiner, L. Addadi, Science 2017, 358, 1172. 2B.A. Palmer*, A. Hirsch, V. Brumfeld, N. Elad, D. Oron, L. Kronik, L. Leiserowitz, S. Weiner, L. Addadi,* PNAS, 2018, 115, 2299.

Collective Sensing and Decision-Making in Animal Groups: From Fish Schools to Primate Societies

Lecture
Date:
Tuesday, April 17, 2018
Hour: 12:30
Location:
Gerhard M.J. Schmidt Lecture Hall
Prof. Iain D. Couzin
|
Director, Dept of Collective Behaviour, Max Planck Institute for Ornithology, Konstanz, Germany Chair of Biodiversity and Collective Behaviour, Dept of Biology, University of Konstanz, Germany Senior Visiting Research Scholar, Princeton University, USA

Understanding how social influence shapes biological processes is a central challenge in contemporary science, essential for achieving progress in a variety of fields ranging from the organization and evolution of coordinated collective action among cells, or animals, to the dynamics of information exchange in human societies. Using an integrated experimental and theoretical approach I will address how, and why, animals exhibit highly-coordinated collective behavior. I will demonstrate new imaging and virtual reality (VR) technology that allows us to reconstruct (automatically) the dynamic, time-varying sensory networks by which social influence propagates in groups. This allows us to identify, for any instant in time, the most socially-influential individuals, to reveal the (counterintuitive) relationship between network structure and social contagion, and to predict the magnitude of complex behavioural cascades within groups before they actually occur. By investigating the coupling between spatial and information dynamics in groups we also demonstrate that emergent problem solving is the predominant mechanism by which mobile groups sense, and respond to complex environmental gradients. Finally I will reveal the critical role uninformed, or unbiased, individuals play in effecting fast, democratic consensus decision-making in collectives, and will test these predictions with experiments involving schooling fish and wild baboons, as well as suggest how such results may relate to decision-making in neural systems.

Is mesoscopic resolution for BOLD fMRI enough? MR Imaging of electrical properties as a more direct probe of neuronal activation

Lecture
Date:
Sunday, April 15, 2018
Hour: 12:30
Location:
Gerhard M.J. Schmidt Lecture Hall
Dr. Rita Schmidt
|
C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, Netherlands

Current state of the art ultra-high field MRI scanners have already achieved submillimeter resolution in 3D imaging of the human brain. Studies of the functional activity in the brain - by Blood Oxygen Level Dependent (BOLD) technique - have utilized this capability to observe mesoscopic (200-300µm) structures in humans. However, does BOLD tell us the full story? With current state of the art in mind, we are looking for the next step forward to better understand the brain physiology. I will share an on-going research on the mapping of electrical properties, aimed at studying functional activity in the human brain and offering a more direct probe of neuronal activity. The research includes a new computational technique for estimating electrical properties from an MR experiment, as well as the implementation of fast acquisition techniques. I will also show a correlation between changes in the electrical conductivity and basic activation paradigms (visual or motor) demonstrating faster response versus BOLD signal.

Emergence of behaviorally relevant motifs in the human cortex

Lecture
Date:
Tuesday, April 10, 2018
Hour: 12:30
Location:
Gerhard M.J. Schmidt Lecture Hall
Dr. Tomer Livne
|
Consultant, Prof. Dov Sagi Group Cortica Ltd, Tel Aviv

Pages

All events, 2018

Pluripotent models for neurodegenerative diseases

Lecture
Date:
Tuesday, June 12, 2018
Hour: 12:30
Location:
Gerhard M.J. Schmidt Lecture Hall
Prof. Eran Meshorer
|
Department of Genetics, The Institute of Life Sciences and The Edmond and Lily Safra Centre for Brain Sciences The Hebrew University of Jerusalem

Enhanced capacity and dynamic gating in a model of context-dependent associative memory

Lecture
Date:
Thursday, May 31, 2018
Hour: 12:00 - 13:00
Location:
Nella and Leon Benoziyo Building for Brain Research
Bill Podlaski
|
Centre for Neural Circuits and Behaviour University of Oxford

An increasing amount of evidence suggests that memory formation and retrieval are modulated by contextual signals, such as behavioral or emotional state. However, typical models of associative memory do not incorporate this dependency. Here we propose an extension to the Hopfield network which takes into account contextual modulation. The network is divided into a set of overlapping subnetworks, each representing a different context with a separate set of memory patterns. Only one subnetwork is active at any given time, thereby reducing interference from memories found in other contexts, which remain dormant through inhibitory control. Using theoretical and numerical methods, we show that these context-modular Hopfield networks have substantially increased memory capacity, as well as robustness to noise and to memory overloading. Their performance depends on two parameters—the number of subnetworks, and their relative size—and when chosen optimally, the capacity is up to ten times greater than the standard Hopfield model. We then show that adding context-dependent dendritic pruning further enhances the performance of the model. Improved performance comes at the cost of limited retrieval, because only memories stored in the active subnetwork can be recalled. To address this, we propose a system in which a controller network dynamically switches the memory network to a desired contextual state before storage or retrieval. Through simulations, we successfully show that this system is able to bias memory retrieval based on context. Overall, our work illustrates the benefits of context-dependent memory, and may have implications for our understanding of cortical memories and their interaction with contextual signals in the prefrontal cortex and hippocampus.

Synaptic and extrasynaptic neuron-glia interactions

Lecture
Date:
Tuesday, May 29, 2018
Hour: 12:30 - 13:30
Location:
Gerhard M.J. Schmidt Lecture Hall
Prof. Alexey Semyanov
|
Institute of Neuroscience University of Nizhny Novgorod, Russia

Brain is often viewed as large neuronal connectome where the information is encoded in the patterns of action potentials and stored in the changes of synaptic strength or appearance of new wiring routes. However, recent studies have demonstrated that astrocytes also possess complex patterns of calcium signals influenced by neuronal activity. Astrocytic calcium signals regulate various functions of these cells including release of gliotransmitters and morphological changes in the astrocytic processes (Tanaka et al., 2013). It has been tempting to suggest that information in astrocytes is encoded in the frequency of calcium events, similar to patters of neuronal action potentials. Synaptically released neurotransmitters thought to trigger new calcium events in perisynaptic astrocytic processes (PAPs) though activation of metabotropic glutamate receptors (mGluRs). In contrast, our recent findings suggest that PAPs are devoid of calcium stores that are required for mGluR-mediated calcium signaling (Patrushev et al., 2013). This makes unlikely any significant role of mGluRs in triggering calcium events in PAPs. Instead, we show that activation of ‘extrasynaptic’ astrocytic mGluRs increases proportion of spatially extended calcium events in the power-law based distribution of calcium event sizes (Wu et al., 2014). This effect takes place without any significant increase in the frequency of calcium events. These findings suggest that astrocytic response to surrounding neuronal activity is rather encoded in spatial characteristics of their calcium events and fundamentally different from temporal information coding in neurons (e.g. coincidence detection, action potentials sequences etc). Nevertheless, we cannot exclude local ionic changes in PAPs in response to synaptic activity. For example, potassium ions accumulate in the synaptic cleft of glutamatergic synapses during repetitive activity. We have demonstrated that the bulk of these ions is contributed by potassium efflux through postsynaptic NMDA receptors (Shih et al., 2013). Potassium mediated depolarization of presynaptic terminal increases glutamate release probability. Now we have found that accumulation of intracleft potassium during repetitive synaptic activity could also inhibit astrocytic glutamate uptake by depolarizing PAPs. This extends glutamate dwell-time in the synaptic cleft and boosts glutamate spillover effects.

From dragons’ sleep to sliders’ sight: reexamination of reptilian model systems

Lecture
Date:
Monday, May 28, 2018
Hour: 12:30
Location:
Gerhard M.J. Schmidt Lecture Hall
Dr. Mark Shein-Idelson
|
Dept of Neurobiology Faculty of Life Sciences Sagol School for Neuroscience Tel Aviv University

Throughout the history of neuroscience, a large set of model systems has been used for studying a large variety of questions. These model systems were frequently chosen for their unique experimental advantages, but studying them also provided a wider perspective on basic questions: By examining the manifestation of a given biological phenomenon across different species, one could separate the salient or fundamental from the transient or variable. In my talk I will focus on two of our studies in reptiles: sleep in bearded dragons and visual processing in red eared sliders. I will show how we can use turtles for understanding structure function relations in neural circuits and how we can use lizards for exploring the organization of collective activity during sleep. In addition, I will show that such studies provide a new u! nderstanding of the evolution of brain dynamics.

Synaptic dynamics in mouse visual cortex

Lecture
Date:
Tuesday, May 15, 2018
Hour: 12:30
Location:
Gerhard M.J. Schmidt Lecture Hall
Dr. Tara Keck
|
University College London

Homeostatic synaptic scaling is thought to occur cell-wide, but recent evidence suggests this form of stabilizing plasticity can be implemented more locally in reduced preparations. To investigate the spatial scales of plasticity in vivo, we used repeated two-photon imaging in mouse visual cortex after sensory deprivation to measure TNF-α dependent increases in spine size as a proxy for synaptic scaling in vivo in both excitatory and inhibitory neurons. We found that after sensory deprivation, increases in spine size are restricted to a subset of dendritic branches, which we confirmed using immunohistochemistry. We found that the dendritic branches that had individual spines that increased in size following deprivation, also underwent a decrease in spine density. Within a given dendritic branch, the degree of spine size increases is proportional to recent spine loss within that branch. Using computational simulations, we show that this compartmentalized form of synaptic scaling better retained the previously established input-output relationship in the cell, while restoring activity levels. We then investigated the relationship between new spines that form after this spine loss and strengthening and find that their spatial positioning facilitates strengthening of maintained synapses.

In vivo identification of brain structures functionally involved in spatial learning and strategy switch

Lecture
Date:
Sunday, May 13, 2018
Hour: 10:00
Location:
Nella and Leon Benoziyo Building for Brain Research
Dr. Suellen DeAlmeida-Correa
|
Visiting Postdoc, Dept of Stress Neurobiology and Neurogenetics Max Planck Institute of Psychiatry, Munich

Spatial learning is a complex behavior which includes, among others, encoding of space, sensory and motivational processes, arousal and locomotor performance. Today, our view on spatial navigation is largely hippocampus-centrist. Less is known about the involvement of brain structures up- and downstream, or out of this circuit. Here, we provide the fist in vivo assessment of the neural matrix underlying spatial learning, using functional manganese-enhanced MRI (MEMRI) and voxel-wise whole brain analysis. Mice underwent place-learning (PL) vs. response-learning (RL) in the water cross maze (WCM) and its readout was correlated to the Mn2+ contrasts. Thus, we identified structures involved in spatial learning largely overlooked in the past, due to methods focused on region of interest (ROI) analyses. Add-on experiments pointed to bias in Mn2+ accumulati! on towards projection terminals, suggesting that our mapping was mostly formed by projection sites of the originally activated structures. This is corroborated by in-depth analysis of MEMRI data after WCM learning showing mostly downstream targets of the hippocampus. These differ between fornical afferences from vCA1 and direct innervation from dCA1/iCA1 (for PL), and structures along the longitudinal association bundle originating in vCA1 (for RL). To elucidate the pattern of Mn2+ accumulation seen on the scans we performed c-fos expression analyses following learning in the WCM. This helped us identify the structures initially activated during spatial learning and its underlying connectivity to establish the matrix. Finally, to test the causal involvement of these structures we inhibited them (through DREADDs) while mice performed in the WCM task. We also focused on the causal involvement of the mPFC-HPC circuit on strategy switch during WCM learning. We believe that this study might shed light into new brain structures involved in spatial learning and strategy switch and complement the current knowledge on these circuits’ connectivity. Moreover, we elucidated some functional mechanisms of MEMRI, clarifying the interpretation of data obtained with this method and its possible future applications.

Advanced Optical Materials in the Mirrored Eyes of Animals

Lecture
Date:
Tuesday, May 8, 2018
Hour: 12:30
Location:
Gerhard M.J. Schmidt Lecture Hall
Dr. Benjamin Palmer
|
Department of Structural Biology, WIS

Some animals, especially those living under water use mirrors rather than lenses to form images. Two general strategies exist in nature for forming images using mirrors, exemplified by the concave mirrored eyes of the scallop1 and the reflecting compound eyes of crustaceans2. Here we discuss these two remarkable visual systems and show how the whole hierarchical organization of the mirrors are exquisitely controlled for image-formation from the structure and morphology of the substituent reflecting crystals at the nanoscale to the overall shape of the mirrors at the millimeter scale. Based on our understanding of the optics and structure we can predict what the animal should be seeing. Whether the neural system can integrate all this information, has yet to be determined. From a materials science perspective, understanding how organisms exert such extraord! inary control over the formation and organization of organic crystals provides inspiration for the development of new organic crystalline materials with rationally designed morphologies and properties. 1B.A. Palmer*, G.J. Taylor, V. Brumfeld, D. Gur, M. Shemesh, N. Elad, A. Osherov, D. Oron, S. Weiner, L. Addadi, Science 2017, 358, 1172. 2B.A. Palmer*, A. Hirsch, V. Brumfeld, N. Elad, D. Oron, L. Kronik, L. Leiserowitz, S. Weiner, L. Addadi,* PNAS, 2018, 115, 2299.

Collective Sensing and Decision-Making in Animal Groups: From Fish Schools to Primate Societies

Lecture
Date:
Tuesday, April 17, 2018
Hour: 12:30
Location:
Gerhard M.J. Schmidt Lecture Hall
Prof. Iain D. Couzin
|
Director, Dept of Collective Behaviour, Max Planck Institute for Ornithology, Konstanz, Germany Chair of Biodiversity and Collective Behaviour, Dept of Biology, University of Konstanz, Germany Senior Visiting Research Scholar, Princeton University, USA

Understanding how social influence shapes biological processes is a central challenge in contemporary science, essential for achieving progress in a variety of fields ranging from the organization and evolution of coordinated collective action among cells, or animals, to the dynamics of information exchange in human societies. Using an integrated experimental and theoretical approach I will address how, and why, animals exhibit highly-coordinated collective behavior. I will demonstrate new imaging and virtual reality (VR) technology that allows us to reconstruct (automatically) the dynamic, time-varying sensory networks by which social influence propagates in groups. This allows us to identify, for any instant in time, the most socially-influential individuals, to reveal the (counterintuitive) relationship between network structure and social contagion, and to predict the magnitude of complex behavioural cascades within groups before they actually occur. By investigating the coupling between spatial and information dynamics in groups we also demonstrate that emergent problem solving is the predominant mechanism by which mobile groups sense, and respond to complex environmental gradients. Finally I will reveal the critical role uninformed, or unbiased, individuals play in effecting fast, democratic consensus decision-making in collectives, and will test these predictions with experiments involving schooling fish and wild baboons, as well as suggest how such results may relate to decision-making in neural systems.

Is mesoscopic resolution for BOLD fMRI enough? MR Imaging of electrical properties as a more direct probe of neuronal activation

Lecture
Date:
Sunday, April 15, 2018
Hour: 12:30
Location:
Gerhard M.J. Schmidt Lecture Hall
Dr. Rita Schmidt
|
C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, Netherlands

Current state of the art ultra-high field MRI scanners have already achieved submillimeter resolution in 3D imaging of the human brain. Studies of the functional activity in the brain - by Blood Oxygen Level Dependent (BOLD) technique - have utilized this capability to observe mesoscopic (200-300µm) structures in humans. However, does BOLD tell us the full story? With current state of the art in mind, we are looking for the next step forward to better understand the brain physiology. I will share an on-going research on the mapping of electrical properties, aimed at studying functional activity in the human brain and offering a more direct probe of neuronal activity. The research includes a new computational technique for estimating electrical properties from an MR experiment, as well as the implementation of fast acquisition techniques. I will also show a correlation between changes in the electrical conductivity and basic activation paradigms (visual or motor) demonstrating faster response versus BOLD signal.

Emergence of behaviorally relevant motifs in the human cortex

Lecture
Date:
Tuesday, April 10, 2018
Hour: 12:30
Location:
Gerhard M.J. Schmidt Lecture Hall
Dr. Tomer Livne
|
Consultant, Prof. Dov Sagi Group Cortica Ltd, Tel Aviv

Pages

All events, 2018

There are no events to display

All events, 2018

There are no events to display