Atomic, Molecular, Optical Science

AMOS encompasses the research in
atomic, molecular, and optical science
at the Weizmann Institute of Science.

AMOS Research Areas

AMOS is a center for quantum physics with atomic, molecular, and optical systems, at the Weizmann Institute of Science. The center includes 15 research groups and activities ranging across most contemporary topics in AMO physics - from atto-second pulses and intense lasers, through precision spectroscopy of ultracold atoms, molecules or ions, to quantum information and quantum optics. AMOS members hold faculty appointments in both the Physics and Chemistry Faculties at the Weizmann Institute of Science.

A wide range of interests and scientific excellence contribute to making AMOS one of Israel's leading research centers. AMOS scientists publish annually numerous scientific manuscripts in leading journals.

News

All News

Seminars

  • Date:
    29
    Oct 2024
    13:15

    Weak and Strong Optical Turbulence.

    Speakers
    Prof. Gregory Falkovich

    I describe the new theory of far-from-equilibrium states of light in focusing and defocusing media.

    Read more

Publications

  • Simple few-shot method for spectrally resolving the wavefront of an ultrashort laser pulse

    Smartsev S., Liberman A., Andriyash I. A., Cavagna A., Flacco A., Giaccaglia C., Kaur J., Monzac J., Tata S., Vernier A., Malka V., Lopez-Martens R. & Faure J. (2024) Optics Letters.
    We present a novel, to the best of our knowledge, and straightforward approach for the spatio-spectral characterization of ultrashort pulses. This minimally intrusive method relies on placing a mask with specially arranged pinholes in the beam path before the focusing optic and retrieving the spectrally resolved laser wavefront from the speckle pattern produced at focus. We test the efficacy of this new method by accurately retrieving chromatic aberrations, such as pulse-front tilt (PFT), pulse-front curvature (PFC), and higher-order aberrations introduced by a spherical lens. The simplicity and scalability of this method, combined with its compatibility with single-shot operation, make it a strong complement to existing tools for high-intensity laser facilities.
  • Improving correlation based super-resolution microscopy images through image fusion by self-supervised deep learning

    Beck L. M., Shocher A., Rossman U., Halfon A., Irani M. & Oron D. (2024) Optics Express.
    Super-resolution imaging is a powerful tool in modern biological research, allowing for the optical observation of subcellular structures with great detail. In this paper, we present a deep learning approach for image fusion of intensity and super-resolution optical fluctuation imaging (SOFI) microscopy images. We construct a network that can successfully combine the advantages of these two imaging methods, producing a fused image with a resolution comparable to that of SOFI and an SNR comparable to that of the intensity image. We also demonstrate the effectiveness of our approach experimentally, specifically on cell samples where microtubules were stained with ATTO647N and imaged using a confocal microscope with a single photon fiber bundle camera, allowing for the simultaneous acquisition of an image scanning microscopy (ISM) image and a SOFISM (ISM and SOFI) image. Our network is designed as a self-supervised network and shows the ability to train on a single pair of images and to generalize to other image pairs without the need for additional training. Our approach offers a flexible and efficient way to combine the strengths of correlation based imaging techniques along with traditional intensity based microscopy, and can be readily applied to other fluctuation based imaging modalities.