2018 research activities

Head Prof. Alon Chen

Picture of Prof. Alon Chen
Head

Prof. Alon Chen

משרד +972-8-934-4490

רקע כללי

Research in Neuroscience in the Department of Neurobiology encompasses a wide variety of subjects, in areas including cellular and molecular biology, neuroanatomy, functional magnetic resonance imaging (fMRI), physiology, pharmacology, psychophysics, and computational sciences.

Basically, the research of the various groups of the Department covers, among others, the following topics:

  • Analysis of the molecular and cellular basis of neuronal and synaptic function.
  • Imaging of neuronal activity underlying higher brain functions.
  • Tracing and characterization of neuronal communication profiles.
  • Characterization of the CNS response to trauma and lesion; developing molecular and cellular therapeutic agents.
  • Determination of the underlying processes and mechanisms of vision, perception, learning, and memory in behaving rodents and primates.
  • Computer modeling of brain function.

At the Neurobiology Department, the structure, function, development, and plasticity of the nervous system are studied at various levels of analysis, using different types of cell and experimental animal models. The groups studying neuronal function at the molecular and cellular levels use in vitro systems ranging from non-neuronal and neuronal cell lines to primary neuronal and glial cells of cerebellar, hippocampal and cortical origin. In many cases, the cells studied are transfected with genes of interest. These cell systems allow the study of the roles of various components of the nervous system, including cell surface membrane components, specific enzymes, neurotransmitters, neuromodulators, growth factors, neuroreceptors, lipid components, ionic channels and cytoskeletal constituents. Algorithms for the synaptic plasticity between neurons, and the role of dendritic ion channels in synaptic input and information processing, are also being studied. Injury models of nerve lesion and oxidative stress paradigms are applied to examine the principles of CNS regeneration, rescue from ischemia and stroke, and apoptotic cell death and senescence.

The groups studying the CNS at the system level are striving to understand the complex neuronal mechanisms underlying learning, memory, and sensory processing (vision, taste, smell), and to determine the relationship between brain and mind. Using track tracing methods, the rules governing the interconnections in the visual cortex are being unraveled. Behavioral studies focus on principles of learning and consolidation, cortical information processing, learning disabilities, and addiction. Functional brain imaging of the human visual cortex is being studied by various techniques, including fMRI. Psychophysical approaches are being used to define processes involved in image segmentation, learning and memory skill acquisition, motor control, and language. Nearly 20 groups of researchers carry out both independent studies and collaborative research with colleagues from within the Department and outside it.

ScientistsShow details