• Skip to main content
  • Skip to navigation
  • Skip to search
Accessibility
  • Increase font size
  • Decrease font size
  • Sharpen color
  • Grayscale
  • Invert color
  • Default
Disclaimerclose
enGo to english websiteActive languageעבעבור לאתר בעברית
open search area

Search form

The Department of Science Teaching
Weizmann Institute of Science
The Department of Science Teaching
  • Home
  • About Us
  • Staff
    • Scientists
    • Interns
    • Postdoctoral Fellows
    • PhD Students
    • MSc Students
    • Consultants and Teaching personnel
    • Administration
  • Research and Development
    • General background
    • Chemistry
      • About
      • Staff
      • Publications
      • Projects
      • Abstracts of theses
      • Learning and Teaching Materials
      • Additional resources
      • Contact Us
    • Computational approaches in Science Education
      • About
      • Staff
      • Publications
      • Projects
      • Abstracts of theses
      • Contact Us
    • Computer Science
      • About
      • Staff
      • Publications
      • Projects
      • Abstracts of theses
      • Learning and Teaching Materials
      • Additional resources
      • Contact Us
    • Earth Science
      • About
      • Staff
      • Publications
      • Projects
      • Abstracts of theses
      • Learning and Teaching Materials
      • Additional resources
      • Contact Us
    • Interdisciplinary Science Education
      • About
      • Staff
      • Publications
      • Projects
      • Abstracts of theses
      • Learning and Teaching Materials
      • Contact Us
    • Life Sciences
      • About
      • Staff
      • Publications
      • Projects
      • Abstracts of theses
      • Learning and Teaching Materials
      • Additional resources
      • Contact Us
    • Learning Sciences
      • About
      • Staff
      • Publications
      • Projects
      • Contact Us
    • Mathematics
      • About
      • Staff
      • Publications
      • Projects
      • Abstracts of theses
      • Learning and Teaching Materials
      • Additional resources
      • Contact Us
    • Physics
      • About
      • Staff
      • Publications
      • Projects
      • Abstracts of theses
      • Learning and Teaching Materials
      • Additional resources
      • Contact Us
    • Science & Technology for Junior High School
      • About
      • Staff
      • Publications
      • Projects
      • Abstracts of theses
      • Learning and Teaching Materials
      • Additional resources
      • Contact Us
    • Ethics committee
      • About
      • Committee members
      • General policy
  • Academics
    • Research student program
    • Rotshild student program
    • Teaching certificate
  • For Teachers
    • Country wide teachers centers
    • Teachers community
    • Teaching materials
  • EduCore
  • Contact Us

You are here

  1. Home
  2. Research and Development
  3. Computational approaches in Science Education
  4. Publications

Publications

  • About
  • Staff
  • Publications
  • Projects
  • Abstracts of theses
  • Contact Us

    2024

  1. Explainable AI for Unsupervised Machine Learning: A Proposed Scheme Applied to a Case Study with Science Teachers

    Feldman-Maggor Y., Nazaretsky T. & Alexandron G. (2024), Proceedings of the 16th International Conference on Computer Supported Education, CSEDU 2024. Ortega-Arranz A., McLaren B., Chounta I-A, Jovanovic J., Poquet O. & Viberg O. (eds.). p. 436-444

  2. Causal-mechanical explanations in biology: Applying automated assessment for personalized learning in the science classroom

    Ariely M., Nazaretsky T. & Alexandron G. (2024), Journal of Research in Science Teaching. 61, 8, p. 1858-1889

  3. Recommender systems for teachers: The relation between social ties and the effectiveness of socially-based features

    Yacobson E., Toda A. M., Cristea A. I. & Alexandron G. (2024), Computers and Education. 210, 104960

  4. Mind the Gap: Confronting the Vast Divide Between CS Teaching and Machine Learning Pedagogy

    Perach S. & Alexandron G. (2024), Technology Enhanced Learning for Inclusive and Equitable Quality Education. Pishtari G., Jivet I., Ruipérez Valiente J. A., Rummel N. & Ferreira Mello R. (eds.). p. 344-358

  5. Recommending Is Reflecting: A Surprising Benefit of Social Recommender Systems for Teachers

    Yacobson E. & Alexandron G. (2024), Technology Enhanced Learning for Inclusive and Equitable Quality Education. Pishtari G., Jivet I., Ruipérez Valiente J. A., Rummel N. & Ferreira Mello R. (eds.). p. 195-200

  6. What Explains Teachers Trust in AI in Education Across Six Countries?

    Viberg O., Cukurova M., Feldman-Maggor Y., Alexandron G., Shirai S., Kanemune S., Wasson B., Tømte C., Spikol D., Milrad M., Coelho R. & Kizilcec R. F. (2024), International Journal of Artificial Intelligence in Education

  7. Perspectives of Generative AI in Chemistry Education Within the TPACK Framework

    Feldman-Maggor Y., Blonder R. & Alexandron G. (2024), Journal of Science Education and Technology

  8. The digital fingerprint of learner behavior: Empirical evidence for individuality in learning using deep learning

    Salman A. & Alexandron G. (2024), Computers and Education: Artificial Intelligence. 7, 100322

  9. 2023

  10. An evaluation of assessment stability in a massive open online course using item response theory

    Gershon S. K., Anghel E. & Alexandron G. (2023), Education and Information Technologies. 29, 3, p. 2625-2643

  11. A General Purpose Anomaly-Based Method for Detecting Cheaters in Online Courses

    Alexandron G., Berg A. & Ruiperez-Valiente J. A. (2023), IEEE Transactions on Learning Technologies. 17, p. 1-11

  12. Using participatory design to design gamified interventions in educational environments

    Toda A., Yacobson E., Alexandron G., Palomino P. T., Souza M., Santos E., Corrêa A., Lisboa R., Cordeiro T. D. & Cristea A. I. (2023), Gamification Design for Educational Contexts. p. 85-96

  13. How Do Teachers Search for Learning Resources? A Mixed Method Field Study

    Yacobson E. & Alexandron G. (2023), Responsive and Sustainable Educational Futures - 18th European Conference on Technology Enhanced Learning, EC-TEL 2023, Proceedings. Jivet I., Perifanou M., Viberg O., Muñoz-Merino P. J. & Papathoma T. (eds.). p. 489-503

  14. Machine Learning and Hebrew NLP for Automated Assessment of Open-Ended Questions in Biology

    Ariely M., Nazaretsky T. & Alexandron G. (2023), International Journal of Artificial Intelligence in Education. 33, 1, p. 1-34

  15. Transformer-based Hebrew NLP models for Short Answer Scoring in Biology

    Schleifer A. G., Klebanov B. B., Ariely M. & Alexandron G. (2023), BEA 2023 - 18th Workshop on Innovative Use of NLP for Building Educational Applications, Proceedings of the Workshop. Tack A., Horbach A., Kochmar E., Burstein J., Madnani N., Laarmann-Quante R., Zesch T., Yaneva V. & Yuan Z. (eds.). p. 550-555

  16. The effects of assessment design on academic dishonesty, learner engagement, and certification rates in MOOCs

    Alexandron G., Wiltrout M. E., Berg A., Gershon S. K. & Ruiperez-Valiente J. A. (2023), Journal of Computer Assisted Learning. 39, 1, p. 141-153

  17. Simulated Learners in Educational Technology: A Systematic Literature Review and a Turing-like Test

    Kaser T. & Alexandron G. (2023), International Journal of Artificial Intelligence in Education. 34, 2, p. 545-585

  18. 2022

  19. A Blended-Learning Program for Implementing a Rigorous Machine-Learning Curriculum in High-Schools

    Perach S. & Alexandron G. (2022), L@S 2022 - Proceedings of the 9th ACM Conference on Learning @ Scale. p. 267-270

  20. Teachers' trust in AI-powered educational technology and a professional development program to improve it

    Nazaretsky T., Ariely M., Cukurova M. & Alexandron G. (2022), British Journal of Educational Technology. 53, 4, p. 914-931

  21. An Instrument for Measuring Teachers' Trust in AI-Based Educational Technology

    Nazaretsky T., Cukurova M. & Alexandron G. (2022), LAK 2022 -12th International Learning Analytics and Knowledge Conference. p. 56-66
    Submitted Version

  22. Assisting Teachers in Finding Online Learning Resources: The Value of Social Recommendations

    Yacobson E., Toda A. M., Cristea A. I. & Alexandron G. (2022), Artificial Intelligence in Education. Posters and Late Breaking Results, Workshops and Tutorials, Industry and Innovation Tracks, Practitioners and Doctoral Consortium - 23rd International Conference, AIED 2022, Proceedings. Cristea A. I., Rodrigo M. M., Matsuda N. & Dimitrova V. (eds.). p. 391-395

  23. Empowering Teachers with AI: Co-Designing a Learning Analytics Tool for Personalized Instruction in the Science Classroom

    Nazaretsky T., Bar C., Walter M. & Alexandron G. (2022), LAK 2022 - Conference Proceedings. p. 1-12

  24. Evaluating a learning analytics dashboard to detect dishonest behaviours: A case study in small private online courses with academic recognition

    Jaramillo-Morillo D., Ruipérez-Valiente J. A., Burbano Astaiza C. P., Solarte M., Ramirez-Gonzalez G. & Alexandron G. (2022), Journal of Computer Assisted Learning. 38, 6, p. 1574-1588

  25. Trustworthy remote assessments: A typology of pedagogical and technological strategies

    Hilliger I., RuipérezValiente J. A., Alexandron G. & Gašević D. (2022), Journal of Computer Assisted Learning. 38, 6, p. 1507-1520

  26. 2021

  27. Encouraging Teacher-Sourcing of Social Recommendations Through Participatory Gamification Design

    Yacobson E., Toda A., Cristea A. I. & Alexandron G. (2021), Intelligent Tutoring Systems - 17th International Conference, ITS 2021, Proceedings. Cristea A. I. & Troussas C. (eds.). p. 418-429

  28. Defining and measuring completion and assessment biases with respect to English language and development status: not all MOOCs are equal

    Gershon S. K., Ruipérez-Valiente J. A. & Alexandron G. (2021), International Journal of Educational Technology in Higher Education. 18, 1, 41

  29. De-identification is insufficient to protect student privacy, orWhat can a field trip reveal?

    Yacobson E., Fuhrman O., Hershkowitz S. & Alexandron G. (2021), Journal of Learning Analytics. 8, 2, p. 83-92

  30. 2020

  31. Assessment that matters: Balancing reliability and learner-centered pedagogy in MOOC assessment

    Alexandron G., Wiltrout M. E., Berg A. & Ruipérez-Valiente J. A. (2020)

  32. Identifying relations between items in an online learning tutor using educational data mining

    Nazaretsky T., Hershkovitz S. & Alexandron G. (2020)

  33. Teacher-sourcing semantic information in a Physics blended-learning environment

    Yacobson E., Bar-Yosef A., Hen E. & Alexandron G. (2020)

  34. 2019

  35. Are MOOC Learning Analytics Results Trustworthy? With Fake Learners, They Might Not Be!

    Alexandron G., Yoo L. Y., Ruiperez-Valiente J. A., Lee S. & Pritchard D. E. (2019), International Journal of Artificial Intelligence in Education. 29, 4, p. 484-506
    Submitted Version

  36. Towards a General Purpose Anomaly Detection Method to Identify Cheaters in Massive Open Online Courses

    Alexandron G., Ruiperez-Valiente J. A. & Pritchard D. E. (2019)

  37. Using Machine Learning to Detect 'Multiple-Account' Cheating and Analyze the Influence of Student and Problem Features

    Ruiperez-Valiente J. A., Munoz-Merino P. J., Alexandron G. & Pritchard D. E. (2019), IEEE Transactions on Learning Technologies. 12, 1, p. 112-122

  38. Understanding the potential and challenges of Big Data in schools and education

    Hershkovitz A. & Alexandron G. (2019), Tendencias Pedagógicas. 35, p. 7-17

  39. 2018

  40. Evaluating the Effectiveness of Animated Cartoons in an Intelligent Math Tutoring System Using Educational Data Mining

    Alexandron G., Keinan G., Levy B. & Hershkovitz S. (2018), Proceedings of EdMedia + Innovate Learning 2018. Fulford C., Weippl E., Sorensen E. K., Sointu E., Marks G., Davidson-Shivers G. V., Knezek G., Viteli J., Braak J. V., Voogt J., Kreijns K., DePryck K., Cantoni L., Castro M., Brown M., Ebner M., Fominykh M., Zawacki-Richter O., Weber P., Christensen R., Hatzipanagos S. & Bastiaens T. (eds.). Amsterdam, Netherlands p. 719-730

  41. A New Method for Measuring Similarity Between Educational Items from Response Data

    Nazaretsky T., Hershkovitz S. & Alexandron G. (2018)

  42. Evaluating the Robustness of Learning Analytics Results Against Fake Learners

    Alexandron G., Ruipérez-Valiente J. A., Lee S. & Pritchard D. E. (2018), Lifelong Technology-Enhanced Learning - 13th European Conference on Technology Enhanced Learning, EC-TEL 2018, Proceedings. Drachsler H., Perez-Sanagustin M., Scheffel M., Elferink R. & Pammer-Schindler V. (eds.). p. 74-87
    Submitted Version

  43. Kappa Learning: A New Method for Measuring Similarity Between Educational Items Using Performance Data

    Nazaretsky T., Hershkovitz S. & Alexandron G. (2018), arXiv
    Submitted Version

  44. ביג דאטה בחינוך - פוטנציאל ואתגרים

    Alexandron G. & Hershkovitz A. (2018), Kriyat Beinayim. 31, p. 8-12

  45. Predicting Reading Comprehension in Digital Platforms

    Alexandron G., Fuhrman O. & Hershkovitz A. (2018)

  46. Privacy and Security in Educational Technology

    Alexandron G. (2018)

  47. Analytics we can trust: On the importance of Verication in the design of Big Data educational technologies

    Alexandron G. (2018)

  48. 2017

  49. Copying@Scale: Using Harvesting Accounts for Collecting Correct Answers in a MOOC

    Alexandron G., Ruipérez-Valiente J. A., Chen Z., Muñoz-Merino P. J. & Pritchard D. E. (2017), Computers & Education. 108, p. 96-114

  50. 2016

  51. Researching for better instructional methods using AB experiments in MOOCs: results and challenges

    Chen Z., Chudzicki C., Palumbo D., Alexandron G., Choi Y. J., Zhou Q. & Pritchard D. E. (2016), Research and Practice in Technology Enhanced Learning. 11, 1, 9

  52. Detecting cheaters in MOOCs using item response theory and learning analytics

    Alexandron G., Lee S., Chen Z. & Pritchard D. E. (2016), CEUR Workshop Proceedings. 1618, p. 53-56
    Submitted Version

  53. Using Multiple Accounts for Harvesting Solutions in MOOCs

    Ruiperez-Valiente J. A., Alexandron G., Chen Z. & Pritchard D. E. (2016), Proceedings of the Third ACM Conference on Learning @ Scale (L@S 2016). p. 63-70
    Submitted Version

  54. 2015

  55. Learning Experiments using AB Testing at Scale in a Physics MOOC

    Chudzicki C., Chen Z., Choi Y., Zhou Q., Alexandron G. & Pritchard D. E. (2015)

  56. Evidence of MOOC Students Using Multiple Accounts to Harvest Correct Answers

    Alexandron G., Ruiperez-Valientea J. A. & Pritchard D. E. (2015)

  57. Using Prediction Models to Analyze the Effectiveness of the Instructional Resources

    Alexandron G., Chen Z., Chudzicki C. & Pritchard D. E. (2015)

  58. Discovering the Pedagogical Resources that Assist Students to Answer Questions Correctly A Machine Learning Approach

    Alexandron G., Zhou Q. & Pritchard D. E. (2015), Proceedings of the 8th International Conference on Educational Data Mining. p. 520-523
    Submitted Version

  59. 2007

  60. Kinetic and dynamic data structures for convex hulls and upper envelopes

    Alexandron G., Kaplan H. & Sharir M. (2007), Computational Geometry-Theory And Applications. 36, 2, p. 144-158

  61. 2006

  62. איך לחתוך את הסנדוויץ' - על גאומטריה חישובית ויישומיה

    Alexandron G. (2006), Galileo

  63. 2005

  64. Kinetic and Dynamic Data Structures for Convex Hulls and Upper Envelopes

    Alexandron G., Kaplan H. & Sharir M. (2005), Workshop on Algorithms and Data Structures. p. 269-281

All rights reserved to the Science Teaching Department, Weizmann Institute of Science

  • Ethics committee
  • Accessibility statement
  • Terms of use
  • Site map
  • Facebook