You are here
Positions
| Scientist | Description |
|---|---|
|
Prof. Gad Asher | 4 Years Phone:+972-8-934-6949 |
<p>Our lab has a longstanding interest in circadian clock resetting. We previously have identified and characterized novel resetting cues such as hypoxia and CO2. Recently, we have developed a new method to study resetting agents in vitro in an efficient and high-throughput manner, dubbed <a href="https://www.nature.com/articles/s41467-021-26210-1">Circa-SCOPE</a>. The method allows screening of multiple drugs in parallel to identify which affects the clock and how. |
|
Prof. Gad Asher | 4 Years Phone:+972-8-934-6949 |
<p>Circadian clocks are key regulators of daily physiology and metabolism in mammals. Our understanding of the role of the circadian clock and specific clock proteins in controlling exercise capacity is rudimentary. Consequently, there is growing interest in exercise biology in general, specifically in its interaction with other processes that govern whole-body physiology and metabolism. |
|
Prof. Gad Asher | 4 Years Phone:+972-8-934-6949 |
<p>We demonstrated that low-amplitude oxygen cycles, which mimic the daily physiological cycles in oxygen levels observed in rodents, can reset the clock in a HIF-1a-dependent manner (<a href="https://www.weizmann.ac.il/Biomolecular_Sciences/Asher/publications" style="color: rgb(30, 121, 159); text-transform: none; text-indent: 0px; letter-spacing: normal; font-family: "Proxima Nova"; font-size: 15px; font-style: normal; font-weight: 400; word-spacing: 0px; white-space: normal; orphans: 2; widows: 2; font-variant-ligatures: normal; font-variant-caps: n |
|
Prof. Rivka Dikstein | 5 Years Phone:+972-8-934-2117 |
<p>Regulation of gene expression at the transcriptional and translational levels is fundamental to all biological activities and is frequently altered in disease states. Our broad research interests are (i) to elucidate how the transcription and translation processes control the cellular response to environmental stimuli, (ii) to reveal the connections between the transcription and translation processes, and (iii) to develop tools to manipulate these processes for the potential treatment of cancer, chronic inflammation, and neurodegenerative diseases.</p>
 |
|
| 5 Years Phone:+972-8-934- |
<p>How does a neuron grow? Genome expression must be matched to different cell sizes, with rapidly growing cells likely requiring higher transcriptional and translational output than cells in slow growth or maintenance phase. Neurons exhibit the greatest size differences of any class of cells, with process lengths ranging from a few microns in central interneurons to a meter in human peripheral neurons, and even longer in larger mammals. |
|
Dr. Nir Fluman | 4.5 Years Phone:+972-8-934-6456 |
Membrane proteins make up a quarter of the proteome of every living organism and participate in nearly every biological process. We are interested in the fascinating process of how these proteins get produced, fold, and assemble in cells. The questions we address are: How do proteins fold in the membranes of living cells? How do the dynamic features of unfolded proteins assist in this process? How do cellular factors recognize membrane proteins that failed to fold and need to be cleared? The lab combines biochemical, cell biology, genetic and computational tools. |
|
Prof. Neta Regev-Rudzki | 5 Years Phone:+972-8-934-3160 |
<p><strong>Applicants with a strong research background at the intersection of molecular biology, biochemistry, imaging and/or biophysics are encouraged to apply. |
|
Prof. Eitan Reuveny | 5 Years Phone:+972-8-934-3243 |
<p>We have open positions for Ph.D. candidates interested in mechanisms of channel regulation by GPCRs using, but not limited to, computational (molecular dynamics), electrophysiological, molecular and/or optical methodologies.</p>
 |
|
Prof. Eitan Reuveny | 48 Months Phone:+972-8-934-3243 |
<p><strong>We have open positions for Ph.D. candidates or Postdoc candidates interested in mechanisms of channels function, GPCRs regulation of Cellular processes emphasizing on ion channel regulation and the interaction between animal toxins and ion channels.</strong></p>
 |
