June 04, 1993 - June 04, 2026

  • Date:28SundayMay 2023

    Studying the role of fluids in the mantle through natural samples and experiments

    More information
    11:00 - 12:00
    Sussman Family Building for Environmental Sciences
    M. Magaritz Seminar Room
    Ronit Kesel
    Institute of Earth Sciences, The Hebrew University of Jerusalem
    Department of Earth and Planetary Sciences
    AbstractShow full text abstract about Mantle fluids are the primary carriers of key volatile eleme...»
    Mantle fluids are the primary carriers of key volatile elements that make the Earth’s long-term planetary habitability possible. The interaction of such volatile-rich fluids with the mantle rocks, especially the sub-cratonic lithospheric mantle leads to alteration of the mantle as well as its melting. High-density fluids encased inside diamonds are the best natural representation of mantle fluid compositions, suggesting their compositions are saline, silicic or carbonatitic. However, the origin and role in the mantle as well as their role in altering the mantle are still unclear.
    In my research, we approach these questions by experimentally simulating the interaction of volatile-rich fluids with mantle rocks at known pressure and temperature relevant to the mantle. Examining different mixtures of volatiles (H2O and CO2) and mantle rocks (peridotite and eclogite), we attempt to understand the origin of each type of fluid found in diamonds as well as study the effect of such interaction on the mantle chemistry and mineralogy.
    Compiling many experimental studies reveals that fluids ranging from silicic to low-Mg carbonatitic are formed in systems of eclogite+H2O+CO2, the more CO2 in the system, the more carbonatitic the fluid is. Fluids ranging from low-Mg carbonatitic to high-Mg carbonatitic in nature are the results of the formation of fluids in the peridotite-H2O-CO2 system. The more CO2 in the system, the more high-Mg carbonatitic the fluid composition is. These results suggest that the various fluids found in the mantle result from changes in the bulk composition of the mantle rocks.
    The mantle rocks are significantly affected during percolation of such fluids through them. For example, experimentally interacting silicic fluid with peridotite demonstrated the formation of various metasomatic peridotites as a function of pressure and temperature, composing of amphibole and mica. The mineral assemblages, chemistry, and P-T conditions in the experiments are similar to those found in metasomatic xenoliths from Kimberly, South Africa, and surrounding localities.