Our society faces a critical challenge in shifting from a reliance on carbon-based energy to sustainable renewable sources. A key step towards achieving clean energy lies in developing efficient catalysts that can convert chemical energy into electricity or use electrons to generate chemical energy.
In our research group, we tackle these challenges by creating customized materials that draw inspiration from nature (biomimicry) and combine principles from interfacial chemistry and surface physics. For this presentation, I focus on the process of photosynthesis as inspiration for the design, characterization, and dynamic nature of functional interfaces that drive energy conversion processes such as CO2 electroreduction and water splitting.
I will also discuss the application of cutting-edge scanning probe microscopy, which allows us to visualize dynamic electrochemical processes at the nanoscale (operando imaging). Additionally, I will highlight our use of unconventional strategies that leverage chiral molecules and abundant two-dimensional materials to enhance electrocatalytic conversion processes.
(References : Nanoletters, 2021, 21, 2059; Nature Comm., 2022, 13, 3356, IJC 62, 11, 2022).