April 17, 1994 - April 17, 2027

  • Date:23SundayJuly 2017

    AMO Special Seminar

    More information
    Time
    11:00
    Title
    Dipolar quantum droplets and stripes in dysprosium Bose-Einstein condensates
    Location
    Edna and K.B. Weissman Building of Physical Sciences
    Drory Auditorium
    Lecturer
    Dr. Igor Ferrier-Barbut
    5. Physikalisches Institut, Universität Stuttgart and IQST
    Organizer
    Department of Physics of Complex Systems
    Optics and Atomic Physics Seminar
    Contact
    AbstractShow full text abstract about I will present experimental results on magnetic quantum flui...»
    I will present experimental results on magnetic quantum fluids. These consist of a dilute Bose-Einstein condensate of dysprosium atoms, the most magnetic stable element. They allow to study the many-body consequences of the anisotropic and long-range dipole-dipole interaction, benefitting from the control tools of ultracold atomic physics.
    First, we have observed in this system an unanticipated phase-transition between a gas and a liquid, characterized by the formation of self-bound droplets [1-3]. It forms in a parameter region where the existing theory, based on the mean-field approximation, predicted a mechanical collapse of the gas. We showed that the repulsive beyond meanfield corrections prevent the collapse and are responsible for the stabilization of the liquid [2]. These corrections arise from quantum fluctuations (zero-point motion) of the collective modes (Bogolyubov sound modes) in the quantum fluid.
    In recent work we show that in constrained geometries, the ground-state is selforganized (left image). Studying these geometries experimentally, we indeed observe stable self-organized ‘stripe’ phases (right image), likely in metastable excited states. I will discuss the prospects for a strange kind of supersolidity in this system. In other experiments we study the effect of a rotating magnetic field on a quantum droplet, as a tool for the study of the different low-lying collective modes of the system.

    [1] Observing the Rosensweig instability of a quantum ferrofluid, H. Kadau, M. Schmitt, M. Wenzel, C. Wink, T. Maier, I. Ferrier-Barbut, and T. Pfau, Nature 530, 194 (2016).
    [2] Observation of quantum droplets in a strongly dipolar Bose gas, I. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel, and T. Pfau, Phys. Rev. Lett. 116, 215301 (2016).
    [3] Self-bound droplets of a dilute magnetic quantum liquid, M. Schmitt, M. Wenzel, F. Böttcher, I. Ferrier-Barbut and T. Pfau, Nature 539, 259 (2016).
    Lecture