• Prof. Yaron Lipman

    Geometric modeling, geometry processing, shape analysis, computer graphics, Discrete differential geometry
  • Picture of Prof. Koby Levy

    Prof. Koby Levy

    The biophysics and evolution of post-translational modifications
    The mechanisms of protein-DNA recognition: understanding the driving forces for fast assembly

    Homepage
  • Dr. Emmanuel Levy

    Design of protein-based super assemblies
    Collaboration with:  Jonathan Doye (Oxford) Samuel Safran (WIS)
    New methods to detect and measure protein interactions
    Computational analyses of protein structure
  • Picture of Prof. Gil Levkowitz

    Prof. Gil Levkowitz

    hypothalamus
    Developmental neurobiology
    Molecular neurophysiology
    Genetics
    Neuroendocrinology

    Homepage
  • Picture of Prof. Shimon Levit

    Prof. Shimon Levit

    Full vector path integrals for light propagation in dielectrics.
    Interaction of Squeezed Light with Atoms and Semiconductor Nanostructures
    Non classical light.
    Resonant scattaring off photonic slabs

    Homepage
  • Picture of Prof. Sima Lev

    Prof. Sima Lev

    Breast cancer progression and metastasis.
    Signal transduction therapy for triple negative breast cancer (TNBC).
    PYK2 and FAK as potential therapeutic targets for breast cancer metastasis.
    Chemotherapy resistance and recurrence of breast cancer.

    Homepage
  • Picture of Dr. Michal Leskes

    Dr. Michal Leskes

    Our research is focused on correlating structure and function in energy storage and conversion materials by advanced magnetic resonance methods. We aim to understand how the composition of materials affects their functionality and how we can control their functionality through deviation from ideal stoichiometry. In particular we are interested in materials for energy storage, such as Li and Na ion batteries, and in the role interfacial chemistry plays in the functionality of electrode and electrolyte materials. We use a wide range of magnetic resonance techniques: solid state NMR, Electron Paramagnetic Resonance (EPR) and Dynamic Nuclear Polarization (DNP). Additionally we investigate the process of polarization transfer from electron spins to nuclear spins in solids DNP utilizing external and internal polarization agents. For more detailed information, please click below and see our home page.

    Homepage
  • Picture of Prof. Ulf Leonhardt

    Prof. Ulf Leonhardt

    Forces of the quantum vacuum
    Analogues of the event horizon
    Geometry and light
    Invisibility cloaking and perfect imaging

    Homepage
  • Picture of Prof. Leslie Leiserowitz

    Prof. Leslie Leiserowitz

    Crystallography and Chemistry in 2- and 3-dimensions
    Grazing incidence x-ray diffraction
    Malaria

    Homepage
  • Picture of Prof. Tsvee Lapidot

    Prof. Tsvee Lapidot

    Metabolic regulation of Blood and Bone forming Stem Cells by Daily Light and Dark Cues (NE, TNF, Melatonin and PGE2).
    Regulation of Human and Murine Hematopoietic Stem Cell Migration and Development by Coagulation Cascades (both aPC/EPCR/Par1 anti inflammatory signals and Thrombin/PAR1 pro-inflammatory signals).
    Studying Molecular Cues guiding Human and murine Hematopoietic Stem Cells Homing and Bone Marrow (BM) recognition, retention and mobilization to the circulation.
    Metabolic regulation of BM Neutrophils activation and recruitment by Lactatae and GPR81 Signaling.
    Metabolic regulation of BM Neutrophils by Daily Light and Dark Cues.
    Energy sharing, Chemotherapy Resistance and Stress induced Mitochondira Transfer between Blood and Bone forming Stem Cells.
    AML AF9 Leukemic Stem Cells Metabolic interactions with BM Stromal Cells and Chemotherapy Resistance.
    Dynamic regulation of the Blood Bone Marrow Endothelial Barrier and Hematopoietic Stem Cell Niches.

    Homepage

Pages