Prof. Stephen Weiner
Prof. Lia Addadi
Dr. Yonatan Stelzer
Dr. Ori Avinoam
Noam Rozen (in the group of Prof. Yaron Lipman)
Prof. Yaron Lipman
Prof. Eli Waxman
Department of Science Teaching
Overview
The Department of Science Teaching main interrelated missions are to advance the academic discipline of science and mathematics education, to enhance the quality and effectiveness of mathematics and science education in Israel, and to develop academic and practical leadership in science and mathematics education in Israel and overseas. The Department carries out educational research and development primarily for grades 7-12 in mathematics, physics, chemistry, computer science, earth sciences and life sciences, and in science and technology for junior high school. The Department targets both the general student population and those who are majoring in one or more of these disciplines. The Department carries out interrelated and continuous long-term academic activities, including research, development and implementation of innovative learning materials, pedagogical models, and teachers' professional development (PD). The Department has many avenues of collaboration with other departments on campus and with the educational system in Israel; it has a significant impact on science education research, practice, and policy in Israel and overseas.
As the Department is currently shifting from mainly textual teaching and learning materials developed in the Department to primarily digital platforms, the demand for techno-pedagogical support has increased tremendously in recent years. This shift allows the incorporation of new methodologies for both teaching and learning, as well as in the way research is carried out in the Department. The large amount of data on teachers’ and students’ performance accumulating in databases promote the development and use of new research methodologies. AI tools are currently being developed to improve both the teaching and learning that take place on these platforms, as well as to expand the Department’s research possibilities. These days Department is establishing a core facilities unit, entitled EduCore, that is expected to provide the needed services (e.g., software development, technological design, data science services, etc.) and to support both research and development in the various research groups, as well as other units and faculties at the Weizmann Institute that are in need of techno-pedagogical services.
Department of Plant and Environmental Sciences
Overview
Plants offer the world its only renewable resource of foods, alternative energy and biotherapeutic compounds. Plants have highly sophisticated short and long-term adaptive mechanisms to the environment as a result of the simple fact that they cannot alter their location during environmental change. Basic understanding of how plants react to the environment and why they grow the way they do are central to devising a rational approach to address three important global challenges, namely to secure more and healthier food, to develop novel plant-based products associated with biotherapeutics and to produce alternative energy resources in the form of biofuels. Research activities in the Department of Plant Sciences are associated with all of the above-mentioned global challenges and range from studies on the function and regulation of isolated genes to their interactive behavior in the context of the whole plant. We have developed extensive in-house genomic, bioinformatics and transgenic infrastructure that enables us to isolate novel genes by gene trapping, knockout or map-based cloning. Cloned genes are manipulated and studied by transgenic analysis to establish their potential in the whole plant. Our research as listed below integrates methodologies of molecular biology, protein modeling, genomics, metabolomics, bioinformatics, system biology, genetics, biochemistry and physiology.
Harnessing light energy and energy transduction in the plant cell: Research is carried out on the basic biophysical phenomenon of photon absorption by chlorophyll through transduction of this energy to ATP and the regulation of energy flux by the plant redox state.
Adaptive response in the plant to the biotic and abiotic environment: Molecular mechanisms that drive the cellular response are investigated under environmental perturbation. Research is directed in understanding the elements that play a role in the recognition of pathogens and the subsequent mounting of plant defense responses as well as in the response of plants to abiotic stresses, such as salt stress.
Plant metabolism and growth: Research is centered around elucidating regulatory metabolic networks for production of essential primary and secondary metabolites as well as understanding gene expression and hormonal networks that control plant metabolism, growth, reproduction and productivity.
Plant genome organization: Molecular tools have been developed to examine the fluidity of the plant genome, as described by transposon element, and the evolution of polyploid plants.


