Head
Prof. Benjamin Geiger
Prof. Benjamin Geiger
Head
Prof. Benjamin Geiger
Office +972-8-934-3910
Email benny.geiger@weizmann.ac.il
Overview
The immune system was originally recognized for its role in defense of the organism against pathogens, including bacteria and viruses. However, we have come to realize that the system not only reacts to exogenous pathogen attacks, but also to internal challenges posed by tissue remodeling, aging, metabolic unbalance and cancer. Moreover, immune cells are also critically involved in normal developmental processes and the maintenance of adult homeostasis in light of innocuous and beneficial environmental challenges such as the microbiome.
Research in the Department of Immunology addresses the challenge to understand contributions of immune cells to physiology and pathophysiology, with the aim to deepen our knowledge and develop new strategies for therapeutic intervention. Accordingly, our research spans a wide range from studying basic mechanisms of development, inter-cellular communication, cell trafficking and effector functions of immune cells to the definition of their specific roles in aging, autoimmune disorders, allergies and cancer.
Department members investigate cellular and molecular mechanisms underlying immune disorders, such as aging, immunodeficiencies, innate immunopathologies, autoimmunity, as well as infectious diseases. Using pre-clinical mouse models and patient samples, we develop novel therapeutic strategies including check-point blockade, immunotherapies and improved vaccination protocols. We develop and employ state-of-the-art approaches ranging from intra-vital imaging and conditional gene manipulation, to advanced bulk and single cell genomics and proteomics to uncover physiological and pathological roles of the immune system.
For more details on our exciting research projects and specific groups in the Immunology Department, please see our web page https://www.weizmann.ac.il/immunology/
Overview
The Department of Immunology and Regenerative Biology (IRB) currently comprises
17 research groups and a total of over 200 people. We are located on the Weizmann
campus in the Candiotty, Britannia and Wolfson buildings.
Research activities of the IRB Department span a broad spectrum of basic and clinically
relevant questions. Topics range from fundamental aspects of cancer, hematopoiesis, cell
differentiation, metabolism, inter-cellular communication, extracellular matrix remodeling and
the genetic and epigenetic changes that contribute to these processes. With a unique focus
on immune cell development and function, we study a wide range of physiological and
pathophysiological settings, including the host-pathogen interface, embryonic development,
inflammation, tissue regeneration post infection and injury, and vascular and lymph
angiogenesis. State-of-the-art approaches developed by our members include intra-vital
and whole organ 3D imaging, multiplexed ex vivo staining, conditional gene manipulation in
animal models, organoid research, advanced genomics and proteomics, and human-derived
samples and their bioinformatic analysis at the single cell level. Combining pre-clinical
mouse models and patient samples, we also develop novel therapeutic strategies for
improved immunotherapies and vaccinations.
The main projects that are currently performed in the department are:
Host-pathogen interactions - Dr. Roi Avraham
Gut tissue dynamics -Dr. Moshe Biton
Studying Tissue Macrophage Function in Health and Disease - Prof. Steffen Jung
Protein degradation by the ubiquitin/proteasome system - Prof. Ami Navon
Vascularization during pregnancy and cancer development - Prof. Michal Neeman
Leukocyte trafficking and differentiation in inflammation and cancer- Prof. Ronen Alon
ECM remodeling: from biophysical principles to drug design - Prof. Irit Sagi
Intracellular signaling cascades in health and disease - Prof. Rony Seger
Epigenetics in stem cells and cancer: developing and applying single-molecule imaging technologies to study the epigenetic code - Dr. Efrat Shema
Cellular functions of long noncoding RNAs - Dr. Igor Ulitsky
The development of the vascular system - Dr. Karina Yaniv
xxx -Prof. Tsvee Lapidot
Growth factors and their receptors in cancer - Prof. Yossi Yarden
Cellular structural biology of human amyloid proteins - Prof. Philipp Selenko
xxx Prof. Benny Geiger
Investigating functional, metabolic and architectural features of normal and malignant tissues with magnetic resonance techniques - Prof. Hadassa Degani
The meiotic cell cycle, angiogenic events associated with follicle development and embryo plantation - Prof. Nava Dekel
Investigating ovarian follicle physiology, regulation and demise in mammals with emphasis on the ovulatory response, including the control of oocyte maturation, transformation of the follicle into corpus luteum and culminating with the release of the fertilizable ovum - Prof. Alex Tsafriri
Elucidation of the mechanisms by which a synthetic tolerogenic peptide ameliorates autoimmune disease manifestations in animal models and in patients with systemic lupus erythematosus (SLE) and Sjogren Syndrome - Prof. Edna Moses
Recognition and Signaling by Immunoreceptors. Electron Transfer and Transport Mechanisms Through Protein Matrices - Prof. Israel Pecht
Head
Prof. Rivka Dikstein
Prof. Rivka Dikstein
Head
Prof. Rivka Dikstein
Office +972-8-934-2117
Email rivka.dikstein@weizmann.ac.il
Overview
The scientific activities in the department of Biomolecular Sciences span several areas in the Life Sciences. The common thread is the study of the biochemistry of life and disease. Emphasis is given to the examination of proteins, whether soluble or membrane-bound, and their key biological functions and we seek a molecular understanding of their evolution, cellular interactions, structures and functions. A variety of biochemical, biophysical, structural, molecular-biological, and state of the art imaging methodologies are employed in our department. Overlapping interests and inter-group cooperations signify the spirit of our research. The department has more than 20 research groups whose activities are centered around the following foci of interest:
- Protein science and macromolecular machines. Several groups investigate the basic principles governing protein-protein interactions; composition, assembly, and architecture of multi-enzyme and other large complexes; catalytic mechanisms and the evolution of proteins and enzymes. A major aim is to understand how the findings relate to intricate biological processes.
- DNA and regulation of gene expression. Various aspects of nucleic acids research are addressed in our department including: DNA repair and mutagenesis in mammals; basal and activated transcription; mRNA translation; specific gene expression in the pancreas; phylogenetic analysis of accumulated somatic mutations.
- Structure, function, and biogenesis of membrane proteins. We investigate important integral membrane proteins on the biochemical, biophysical, structural, and physiological levels. This includes Na+ and K+ channels, Na+/K+ ATPase and its FXYD protein regulators, multidrug transporters, intra-membrane proteases, and peptides that integrate into membranes in various systems.
- Membranes, lipids, and organelle structure, function, and biogenesis. Studies in our department include the biosynthetic pathway of membrane proteins; intracellular protein traffic, especially during the process of autophagy; lysosome biogenesis and lipid homeostasis; Calcium homeostasis; and, assembly and function of membrane proteins involved in the immune response, infectious diseases, and viral envelopes.
- Signaling within and between cells. Several researchers in the department are interested in problems related to signal transduction. Cell guidance and navigation; axon guidance; cell death and tissue damage; long distance intracellular signaling; regulation of expression of virulence factors; regulation of the circadian rhythm; epigenetic gene silencing; epigenetics and developmental regulation.
- Molecular basis of disease. Many research programs in our department involve human disorders, diseases, and syndromes. This includes inflammation, infections by various pathogens and antibiotic resistance, organophosphate detoxification, obesity and diabetes, cancer, and lysosomal storage diseases. Many of these disorders are investigated at the molecular level.
A variety of methodologies are being utilized, with an emphasis on biochemistry, biophysics, molecular genetics, advanced light microscopy, computation methods, and structural tools (such as crystallography, atomic force microscope, mass spectrometry). Additional information can be obtained in the department's Home Page.
Head
Prof. Yitzhak Pilpel
Prof. Yitzhak Pilpel
Head
Prof. Yitzhak Pilpel
Office +972-8-934-6058
Email pilpel@weizmann.ac.il
Overview
The molecular basis of genetics and related biological processes are under investigation in our Department. The investigators approach these processes from the most reduced and reconstructed systems up to more systemic and computational analysis. Different organisms are employed including virus, yeast, Drosophila, mouse and human. These animal models and cell culture systems are used to study the mechanisms of;
a. Basic processes in gene expression, such as transcription, translation and protein degradation.
b. Cellular responses to various stimuli, such as cytokines, growth factors and exposure to DNA-damage.
c. Regulation of cell growth, senescence, differentiation and death.
d. Development; Mechanistic view of zygote to embryo transition and development of various organs, such as brain, muscles, bones and pancreas.
e. Genetic and acquired diseases such as cancer and virus infection. Embryonic stem cell biology, early development and advance human disease modeling.
f. Study of pluripotent stem cell biology and epigenetic reprogramming.
g. Computational and system biology. The function/evolution of genes and their diversification.
Head
Prof. Yuval Eshed
Prof. Yuval Eshed
Head
Prof. Yuval Eshed
Office +972-8-934-3693
Email yuval.eshed@weizmann.ac.il
Overview
Plants offer the world its only renewable resource of foods, alternative energy and biotherapeutic compounds. Plants have highly sophisticated short and long-term adaptive mechanisms to the environment as a result of the simple fact that they cannot alter their location during environmental change. Basic understanding of how plants react to the environment and why they grow the way they do are central to devising a rational approach to address three important global challenges, namely to secure more and healthier food, to develop novel plant-based products associated with biotherapeutics and to produce alternative energy resources in the form of biofuels. Research activities in the Department of Plant Sciences are associated with all of the above-mentioned global challenges and range from studies on the function and regulation of isolated genes to their interactive behavior in the context of the whole plant. We have developed extensive in-house genomic, bioinformatics and transgenic infrastructure that enables us to isolate novel genes by gene trapping, knockout or map-based cloning. Cloned genes are manipulated and studied by transgenic analysis to establish their potential in the whole plant. Our research as listed below integrates methodologies of molecular biology, protein modeling, genomics, metabolomics, bioinformatics, system biology, genetics, biochemistry and physiology.
Harnessing light energy and energy transduction in the plant cell: Research is carried out on the basic biophysical phenomenon of photon absorption by chlorophyll through transduction of this energy to ATP and the regulation of energy flux by the plant redox state.
Adaptive response in the plant to the biotic and abiotic environment: Molecular mechanisms that drive the cellular response are investigated under environmental perturbation. Research is directed in understanding the elements that play a role in the recognition of pathogens and the subsequent mounting of plant defense responses as well as in the response of plants to abiotic stresses, such as salt stress.
Plant metabolism and growth: Research is centered around elucidating regulatory metabolic networks for production of essential primary and secondary metabolites as well as understanding gene expression and hormonal networks that control plant metabolism, growth, reproduction and productivity.
Plant genome organization: Molecular tools have been developed to examine the fluidity of the plant genome, as described by transposon element, and the evolution of polyploid plants.
Head
Prof. Yinon Rudich
Prof. Yinon Rudich
Head
Prof. Yinon Rudich
Office +972-8-934-4237
Email yinon.rudich@weizmann.ac.il
Overview
The research in this department is dedicated to understanding the complex inter-relationships among the major Earth Systems and on the human impact on the Earth's environment and climate. In addition, research is conducted on planetary atmospheres and planetary geomorphologies.
The Department's research activities have several general areas of activities. One focuses on water and includes hydrology, geochemistry, land-plant-atmosphere interactions, and oceanography. A second activity is in the use of stable isotopes for reconstructions of paleoclimatic and of biosphere-atmosphere dynamics, and a third is in the area of atmospheric chemistry and dynamics, and cloud physics. The fourth area of research is in planetary sciences. Our research requires knowledge of the interdependent components that together constitute the "environment", as well as a commitment to protect this environment by improving the manner in which air, water, land, and energy are utilized by humans. The Department is distinguished by the interactions among scientists from different backgrounds and expertise, which is critical for achieving a comprehensive understanding of the global environment and planetary sciences.
The department promotes international collaborations based on short- and long-term visits for research and training by scientists who complement existing expertise in the Department. The interdisciplinary nature of the Department is well reflected in the academic training of the research students. Their backgrounds vary from physics, chemistry, and mathematics through geology to biology. We encourage the participation of students who are interested in not only investigating in depth a specific subject but who are also interested in a broader and integrative approach to science.
Head
Prof. Leeor Kronik
Prof. Leeor Kronik
Head
Prof. Leeor Kronik
Office +972-8-934-4993
Email leeor.kronik@weizmann.ac.il
Overview
Activities in the Department span a wide range of topics from soft, composite and hard materials to energy research, nanoscience, and biological materials. A unifying theme is the study of material functionality and its relation to fundamental properties at multiple scales. These properties may be mechanical, structural, chemical, electronic, magnetic, optical, and more. Some examples are:
How do shapes and sizes of nm-sized particles affect their properties?
How can we tune the properties of solar cells by manipulating their material interfaces?
How does friction in knee and hip joints depend on polyelectrolytes that lubricate them?
How can we design self-assembling (bio)chemical systems?
THE RESEARCH IS BASED ON AN INTERDISCIPLINARY APPROACH, and indeed the scientists bring complementary experience in chemistry and physics, including both theory and experiment.
Head
Prof. Israel Bar-Joseph
Prof. Israel Bar-Joseph
Head
Prof. Israel Bar-Joseph
Office +972-8-934-4534
Email hbar@weizmann.ac.il
Overview
The scientific activity of the department is mainly concentrated around the experimental and theoretical research in quantum solid state physics. It includes experimental research of mesoscopic physics, quantum Hall physics, topological states of matter, high temperature superconductors, two and one dimensional superconductors, metal-insulator transition, carbon nanotubes, semiconductor nanowires, and study of material growth. The theoretical efforts concentrate on similar subjects with added work on disordered materials, cold atoms, and quantum optics.
The Braun Center for sub micron research is an integral part of the department. It is a modern and well equipped center, with growth (three MBE's) and characterization systems, which allows to conduct experiments on sub micron semiconductor structures under high magnetic fields, conventional and high temperature superconductors, and nanowires made of carbon nanotubes and semiconductor nanowires.
Head
Prof. Elisha Moses
Prof. Elisha Moses
Head
Prof. Elisha Moses
Office +972-8-934-3139
Email elisha.moses@weizmann.ac.il
Overview
The Department of Physics of Complex Systems has research programs in fundamental and applied physics. Research in optics and atomic physics includes nonlinear optics, ultra fast optics and high harmonic generation, quantum optics, slow light, descrete optics, nano optics and nonlinear microscopy, laser cooling and trapping of atoms and ions, studies of Bose Einstein condensation, precision spectroscopy and quantum information processing. Theoretical and experimental research in soft condensed matter is concentrated on equilibrium and non-equilibrium statistical physics, clustering of data, bioinformatics and systems biology, electrokinetics of ions and charged particles in low dielectric liquids, colloids, soft materials and complex fluids. Experimental and theoretical hydrodynamics concentrates on turbulence, spatio-temporal chaos, turbulent Rayleigh-Benard convection, liquids at interfaces, droplet impact, sedimentation and dynamics of single micro-objects, such as polymers, vesicles, capsules and hydrodynamics of their solutions. Turbulence theory is developed in general and in applications to cloud physics. Classical and quantum chaos, statistics of nodal lines in quantum systems and turbulence are studied theoretically. Mathematical and computational methods for archaeological research are developed. Theoretical physical biology deals with modeling living information systems, their molecular components and the way they evolve. Experimental bio-physics deals with bio-molecules, neural cultures, neurophysics, physics of the brain, physics of bio-systems and decision making in ant colonies.
Head
Prof. Ran Budnik
Prof. Ran Budnik
Head
Prof. Ran Budnik
Office +972-8-934-4462
Email ran.budnik@weizmann.ac.il
Overview
The Department of Particle Physics and Astrophysics is engaged in both experimental and theoretical research, in various directions. These include elementary particle physics, field theory, string theory, theoretical astrophysics, observational astrophysics, particle astrophysics, relativistic heavy ion physics, molecular physics, nuclear physics, plasma physics, and radiation detection physics.
Pages