• Picture of Prof. Gershom (Jan) Martin

    Prof. Gershom (Jan) Martin

    Computational Quantum Chemistry
    Collaboration with:  D. Milstein, M. van der Boom, R. Neumann, M. A. Iron, L. Kronik
    High-accuracy ab initio thermochemistry: method development and applications.
    Development of novel, more universal, density functionals
    Application of density functional methods to organometallic systems, with special reference to homogenous catalysis.
    Ab initio prediction of rotation-vibration spectra beyond the harmonic approximation.
    Intermolecular interactions

    Homepage
  • Picture of Prof. Ehud Shapiro

    Prof. Ehud Shapiro

    Laying the Biological, Computational and Architectural Foundations for Human Cell Lineage Discovery
    Collaboration with:  E. Shapiro, V. Adalsteinsson, H. Brodi, M. Minden, R. Halaban, C. Klein, M. Meyerson, C. Wu, T. Zukerman, R. Shalom

    Homepage
  • Picture of Prof. Boaz Nadler

    Prof. Boaz Nadler

    Mathematical Statistics, Statistical Machine Learning, Statistical Signal and Image Processing, Applied Mathematics

    Homepage
  • Picture of Dr. Boaz Katz

    Dr. Boaz Katz

    Open questions in theoretical astrophysics including:
    How do stars explode to produce supernovae? (I think there is an actual chance to finally answer this soon due to accumulating data and new ideas!)
    The three body problem (surprisingly connected to supernovae)
    Where do Cosmic Rays come from and how are they accelerated?

    Homepage
  • Picture of Dr. Ofer Firstenberg

    Dr. Ofer Firstenberg

    Quantum optics with interacting photons: photonic quantum gates and fluids of light.
    Coherent optical processes in hot and cold atoms.
    Atomic sensors.

    Homepage
  • Picture of Prof. Oded Goldreich

    Prof. Oded Goldreich

    Randomness and Computation
    Property Testing
    Probabilistic proof systems
    Pseudorandomness
    Foundations of Cryptography
    Complexity theory

    Homepage
  • Picture of Prof. Ulf Leonhardt

    Prof. Ulf Leonhardt

    Forces of the quantum vacuum
    Analogues of the event horizon
    Geometry and light
    Invisibility cloaking and perfect imaging

    Homepage
  • Picture of Prof. Eilam Gross

    Prof. Eilam Gross

    Higgs Physics with the ATLAS detector at the LHC
    Collaboration with:  Students: Michael Pitt and Jonathan Shlomi
    Search for Charged Higgs Boson
    Search for Higgs Decay to Charm Quarks
    Chram Tag
    Strtiatics in High Energy Pjysics

    Homepage
  • Picture of Prof. Gilad Perez

    Prof. Gilad Perez

    What gives masses to the particles? We believe that it is related to electroweak symmetry breaking which raises the hierarchy problem, the huge gap between the weak and Planck scales. The LHC experiments is addressing some of these questions and at the same time rising new ones. Recent cosmological-observation raised additional puzzles: What is the source of dark matter and energy? We explore experimental and theoretical methods to improve our knowledge regarding these issues. We also propose to use optical atomic clock spectroscopy to Search for Higgs-mediated interactions in atoms at table top experiments
    Interpreting a 750 GeV Diphoton Resonance, By Rick S. Gupta, Sebastian Jager, Yevgeny Kats, Gilad Perez, Emmanuel Stamou. arXiv:1512.05332 [hep-ph].
    Is the Higgs Mechanism of Fermion Mass Generation a Fact? A Yukawa-less First-Two-Generation Model, By Diptimoy Ghosh, Rick Sandeepan Gupta, Gilad Perez. arXiv:1508.01501 [hep-ph].
    A Universe without weak interactions, By Roni Harnik, Graham D. Kribs, Gilad Perez. hep-ph/0604027. Phys.Rev. D74 (2006) 035006.

    Homepage
  • Picture of Dr. Shikma Bressler

    Dr. Shikma Bressler

    ATLAS experiment
    Data analysis - Searches for physics beyond the standard model
    Lepton flavour violating decays of the Higgs and Z bosons
    Asymmetry in electron/muon final states
    Generic data driven searches
    Instrumentation - Upgrade of the ATLAS muon spectrometer
    Production and testing of the sTGC chambers
    PErformance studies
    Installation in the ATLAS cavern
    Detector physics
    Collaboration with:  A. Breskin and L. Arazi
    Basic R&D
    The role of resistive materials in gaseous detectors
    Charge and light amplification in Liquid Argon
    Applicative R&D
    Physics applications - future calorimeters in accelerators and neutrino physics experiments
    Civil applications - muon tomography for hazardous material detection, volcanology, medicine and more

    Homepage

Pages