Department of Biomolecular Sciences

Head Prof. Rivka Dikstein

Picture of Prof. Rivka Dikstein
Head

Prof. Rivka Dikstein

Office +972-8-934-2117

Overview

The scientific activities in the department of Biomolecular Sciences span several areas in the Life Sciences. The common thread is the study of the biochemistry of life and disease. Emphasis is given to the examination of proteins, whether soluble or membrane-bound, and their key biological functions and we seek a molecular understanding of their evolution, cellular interactions, structures and functions. A variety of biochemical, biophysical, structural, molecular-biological, and state of the art imaging methodologies are employed in our department. Overlapping interests and inter-group cooperations signify the spirit of our research. The department has more than 20 research groups whose activities are centered around the following foci of interest:


  1. Protein science and macromolecular machines. Several groups investigate the basic principles governing protein-protein interactions; composition, assembly, and architecture of multi-enzyme and other large complexes; catalytic mechanisms and the evolution of proteins and enzymes. A major aim is to understand how the findings relate to intricate biological processes.
     
  2. DNA and regulation of gene expression. Various aspects of nucleic acids research are addressed in our department including: DNA repair and mutagenesis in mammals; basal and activated transcription; mRNA translation; specific gene expression in the pancreas; phylogenetic analysis of accumulated somatic mutations.
     
  3. Structure, function, and biogenesis of membrane proteins. We investigate important integral membrane proteins on the biochemical, biophysical, structural, and physiological levels. This includes Na+ and K+ channels, Na+/K+ ATPase and its FXYD protein regulators, multidrug transporters, intra-membrane proteases, and peptides that integrate into membranes in various systems.
     
  4. Membranes, lipids, and organelle structure, function, and biogenesis. Studies in our department include the biosynthetic pathway of membrane proteins; intracellular protein traffic, especially during the process of autophagy; lysosome biogenesis and lipid homeostasis; Calcium homeostasis; and, assembly and function of membrane proteins involved in the immune response, infectious diseases, and viral envelopes.
     
  5. Signaling within and between cells. Several researchers in the department are interested in problems related to signal transduction. Cell guidance and navigation; axon guidance; cell death and tissue damage; long distance intracellular signaling; regulation of expression of virulence factors; regulation of the circadian rhythm; epigenetic gene silencing; epigenetics and developmental regulation.
     
  6. Molecular basis of disease. Many research programs in our department involve human disorders, diseases, and syndromes. This includes inflammation, infections by various pathogens and antibiotic resistance, organophosphate detoxification, obesity and diabetes, cancer, and lysosomal storage diseases. Many of these disorders are investigated at the molecular level.

A variety of methodologies are being utilized, with an emphasis on biochemistry, biophysics, molecular genetics, advanced light microscopy, computation methods, and structural tools (such as crystallography, atomic force microscope, mass spectrometry). Additional information can be obtained in the department's Home Page.

Department of Molecular Genetics

Head Prof. Yitzhak Pilpel

Picture of Prof. Yitzhak Pilpel
Head

Prof. Yitzhak Pilpel

Office +972-8-934-6058

Overview

The molecular basis of genetics and related biological processes are under investigation in our Department. The investigators approach these processes from the most reduced and reconstructed systems up to more systemic and computational analysis. Different organisms are employed including virus, yeast, Drosophila, mouse and human. These animal models and cell culture systems are used to study the mechanisms of;
a. Basic processes in gene expression, such as transcription, translation and protein degradation.
b. Cellular responses to various stimuli, such as cytokines, growth factors and exposure to DNA-damage.
c. Regulation of cell growth, senescence, differentiation and death.
d. Development; Mechanistic view of zygote to embryo transition and development of various organs, such as brain, muscles, bones and pancreas.
e. Genetic and acquired diseases such as cancer and virus infection. Embryonic stem cell biology, early development and advance human disease modeling.
f. Study of pluripotent stem cell biology and epigenetic reprogramming.
g. Computational and system biology. The function/evolution of genes and their diversification.

Department of Plant and Environmental Sciences

Head Prof. Yuval Eshed

Picture of Prof. Yuval Eshed
Head

Prof. Yuval Eshed

Office +972-8-934-3693

Overview

Plants offer the world its only renewable resource of foods, alternative energy and biotherapeutic compounds. Plants have highly sophisticated short and long-term adaptive mechanisms to the environment as a result of the simple fact that they cannot alter their location during environmental change. Basic understanding of how plants react to the environment and why they grow the way they do are central to devising a rational approach to address three important global challenges, namely to secure more and healthier food, to develop novel plant-based products associated with biotherapeutics and to produce alternative energy resources in the form of biofuels. Research activities in the Department of Plant Sciences are associated with all of the above-mentioned global challenges and range from studies on the function and regulation of isolated genes to their interactive behavior in the context of the whole plant. We have developed extensive in-house genomic, bioinformatics and transgenic infrastructure that enables us to isolate novel genes by gene trapping, knockout or map-based cloning. Cloned genes are manipulated and studied by transgenic analysis to establish their potential in the whole plant. Our research as listed below integrates methodologies of molecular biology, protein modeling, genomics, metabolomics, bioinformatics, system biology, genetics, biochemistry and physiology.
Harnessing light energy and energy transduction in the plant cell: Research is carried out on the basic biophysical phenomenon of photon absorption by chlorophyll through transduction of this energy to ATP and the regulation of energy flux by the plant redox state.
Adaptive response in the plant to the biotic and abiotic environment: Molecular mechanisms that drive the cellular response are investigated under environmental perturbation. Research is directed in understanding the elements that play a role in the recognition of pathogens and the subsequent mounting of plant defense responses as well as in the response of plants to abiotic stresses, such as salt stress.
Plant metabolism and growth: Research is centered around elucidating regulatory metabolic networks for production of essential primary and secondary metabolites as well as understanding gene expression and hormonal networks that control plant metabolism, growth, reproduction and productivity.
Plant genome organization: Molecular tools have been developed to examine the fluidity of the plant genome, as described by transposon element, and the evolution of polyploid plants.

Department of Earth and Planetary Sciences

Head Prof. Yinon Rudich

Picture of Prof. Yinon Rudich
Head

Prof. Yinon Rudich

Office +972-8-934-4237

Overview

The research in this department is dedicated to understanding the complex inter-relationships among the major Earth Systems and on the human impact on the Earth's environment and climate. In addition,  research is conducted on planetary atmospheres and planetary geomorphologies.

The Department's research activities have several general areas of activities. One focuses on water and includes hydrology, geochemistry, land-plant-atmosphere interactions, and oceanography. A second activity is in the use of stable isotopes for reconstructions of paleoclimatic and of biosphere-atmosphere dynamics, and a third is in the area of atmospheric chemistry and dynamics, and cloud physics. The fourth area of research is in planetary sciences.   Our research requires knowledge of the interdependent components that together constitute the "environment", as well as a commitment to protect this environment by improving the manner in which air, water, land, and energy are utilized by humans. The Department is distinguished by the interactions among scientists from different backgrounds and expertise, which is critical for achieving a comprehensive understanding of the global environment and planetary sciences.

The department promotes international collaborations based on short- and long-term visits for research and training by scientists who complement existing expertise in the Department. The interdisciplinary nature of the Department is well reflected in the academic training of the research students. Their backgrounds vary from physics, chemistry, and mathematics through geology to biology. We encourage the participation of students who are interested in not only investigating in depth a specific subject but who are also interested in a broader and integrative approach to science.

Department of Materials and Interfaces

Head Prof. Leeor Kronik

Picture of Prof. Leeor Kronik
Head

Prof. Leeor Kronik

Office +972-8-934-4993

Overview

Activities in the Department span a wide range of topics from soft, composite and hard materials to energy research, nanoscience, and biological materials. A unifying theme is the study of material functionality and its relation to fundamental properties at multiple scales. These properties may be mechanical, structural, chemical, electronic, magnetic, optical, and more. Some examples are:

How do shapes and sizes of nm-sized particles affect their properties?

How can we tune the properties of solar cells by manipulating their material interfaces?

How does friction in knee and hip joints depend on polyelectrolytes that lubricate them?

How can we design self-assembling (bio)chemical systems?

 

THE RESEARCH IS BASED ON AN INTERDISCIPLINARY APPROACH, and indeed the scientists bring complementary experience in chemistry and physics, including both theory and experiment.

Department of Condensed Matter Physics

Head Prof. Israel Bar-Joseph

Picture of Prof. Israel Bar-Joseph
Head

Prof. Israel Bar-Joseph

Office +972-8-934-4534

Overview

The scientific activity of the department is mainly concentrated around the experimental and theoretical research in quantum solid state physics. It includes experimental research of mesoscopic physics, quantum Hall physics, topological states of matter, high temperature superconductors, two and one dimensional superconductors, metal-insulator transition, carbon nanotubes, semiconductor nanowires, and study of material growth. The theoretical efforts concentrate on similar subjects with added work on disordered materials, cold atoms, and quantum optics.
The Braun Center for sub micron research is an integral part of the department. It is a modern and well equipped center, with growth (three MBE's) and characterization systems, which allows to conduct experiments on sub micron semiconductor structures under high magnetic fields, conventional and high temperature superconductors, and nanowires made of carbon nanotubes and semiconductor nanowires.

Department of Physics of Complex Systems

Head Prof. Elisha Moses

Picture of Prof. Elisha Moses
Head

Prof. Elisha Moses

Office +972-8-934-3139

Overview

The Department of Physics of Complex Systems has research programs in fundamental and applied physics. Research in optics and atomic physics includes nonlinear optics, ultra fast optics and high harmonic generation, quantum optics, slow light, descrete optics, nano optics and nonlinear microscopy, laser cooling and trapping of atoms and ions, studies of Bose Einstein condensation, precision spectroscopy and quantum information processing. Theoretical and experimental research in soft condensed matter is concentrated on equilibrium and non-equilibrium statistical physics, clustering of data, bioinformatics and systems biology, electrokinetics of ions and charged particles in low dielectric liquids, colloids, soft materials and complex fluids. Experimental and theoretical hydrodynamics concentrates on turbulence, spatio-temporal chaos, turbulent Rayleigh-Benard convection, liquids at interfaces, droplet impact, sedimentation and dynamics of single micro-objects, such as polymers, vesicles, capsules and hydrodynamics of their solutions. Turbulence theory is developed in general and in applications to cloud physics. Classical and quantum chaos, statistics of nodal lines in quantum systems and turbulence are studied theoretically. Mathematical and computational methods for archaeological research are developed. Theoretical physical biology deals with modeling living information systems, their molecular components and the way they evolve. Experimental bio-physics deals with bio-molecules, neural cultures, neurophysics, physics of the brain, physics of bio-systems and decision making in ant colonies.

  • Picture of Prof. Yehiel Zick

    Prof. Yehiel Zick

    Mode of action of galectin-8, a mammalian lectin
    The molecular basis of Insulin Resistance: a Phosphorylation based Uncoupling of Insulin Signalling
    The insulin receptor as a model system for transmembrane signaling: Mode of interaction of the insulin receptor with its downstream effector molecules.
    Mammalian lectins as regulators of cell adhesion, cell growth, and apoptosis.
    Receptor trafficking: Regulation of endocytosis and recycling of the insulin receptor.
    Role of Galectin-8 in bone remodeling

    Homepage
  • Picture of Prof. Elazar Zelzer

    Prof. Elazar Zelzer

    the roles of the VEGF pathway in different steps during skeletal development.
    Studying the role of mechanical load on embryonic bone development

    Homepage
  • Picture of Prof. Eli Zeldov

    Prof. Eli Zeldov

    Scanning nanoSQUID magnetic microscopy
    Scanning nanoscale thermal imaging
    Imaging of dissipation mechanisms in quantum and topological systems
    Magnetism and dissipation in magic angle twisted bilayer graphene
    Quantum anomalous Hall effect
    Imaging of current and dissipation in the quantum Hall effect
    Berry curvature magnetism in topological systems
    Magnetism at oxide interfaces
    Superconductivity
    Vortex matter and dynamics

    Homepage

Pages