-
Prof. Ernesto Joselevich
Nanotubes and Nanowires: From Self-Organization to Functional NanosystemsNanometer-scale materials can have unique properties due to their reduced dimensions, and serve as building blocks for the assembly of miniature functional systems. In macroscopic functional systems, wires, tubes and rods play critical roles of transporting energy, forces, matter and information. Which materials could play analogous roles at the smallest possible scale? How does the reduced dimensionality determine the properties of molecular wires? How can they be organized and integrated into functional systems?Our research focuses on the organization of one-dimensional nanostructures, such as carbon nanotubes, inorganic nanotubes and nanowires, their integration into functional nanosystems (mechanical, electronic, electromechanical, optoelectronic, electromagnetic, thermal, etc.) and their characterization by mechanical, electrical and optical measurements at the nanometer scale.ProjectsGuided growth of horizontal nanowiresEpitaxial approaches to carbon nanotube organizationNon-equilibrium self-organization of complex nanostructuresNanotube torsion and NEMSSurface-directed self-assemblyPolymers as molecular wiresTheory of molecular wires
Homepage
-
Prof. Amnon Horovitz
Linear free energy relationships (LFER) analysis of allosteric transitions in proteins.Analysis of correlated mutations in proteinsCollaboration with: Ron Unger (Bar Ilan University)Allostery in the structure and function of GroEL and CCT chaperonins.Collaboration with: Keith Willison (Imperial College, London); Michal Sharon;Chaperonin-mediated protein folding.Collaboration with: Gilad HaranAnalysis of protein substrate specificity of chaperonins
Homepage
-
Prof. Eran Hornstein
molecular NeurodegenerationRNA and RNA -binding proteins in motor neurons and amyotrophic lateral sclerosis (ALS)Human genetics for neuroscience researchBiomarkers of neurodegenerationMulti-omics and machine learning for biomarkersbiomolecular condensates and stress granules in ALS
Homepage
-
Prof. Avi Hofstein
Research and evaluationCollaboration with: R. MamlokFormative and summative of curriculum units that are developed by the chemistry group and the science for all studentsTeachers' and students' perceptions and attitudes towards science and technology.Non science oriented students' conception of key ideas and concept in chemistryThe development of modules for non-science oriented studentsAnalysis of learning difficulties and misconception in chemistry in the Israeli BagrutDevelopment of argumentation skills in inquiry laboratoriesMisconception regarding bonding and structure of moleculesAssessment of students' perception of the chemistry classroom and laboratory learning environmentHigh school chemistry curriculum development and implementationCollaboration with: Rachel mamlok-Naaman,The development and implementation of text books and teachers' guidePreparation of resources and units for the teaching of Industrial chemistry in Israel.Development of new instructional techniques to teach chemistry in high schools.Inquiry type experiments andThe use of internet for instruction.Development of CAI (computer Assisst Instruction)Development of introductory (basic) modules for a new syllabus in high school chemistry. (Development of modules for non-science oriented students in high schools
Homepage
-
Prof. Gary Hodes
Semiconductor-sensitized nanoporous solar cells and semiconductor film depositionCollaboration with: D. Cahen (WIS)Electrochemical and chemical bath deposition of semiconductor films.Nanocrystalline solar cells; semiconductor-sensitized nanoporous cellsCharge transfer in nanocrystalline films
Homepage
-
Prof. Moty Heiblum
Exotic quantum states with quantum statistics different from elementary particlesNon-abelian quantum states (e.g., hosting Majorana particles)Interference of electrons and fractional charges in the quantum Hall regimeThermal conductance of one-dimensional modes, revealing quantum behavior
Homepage
