Dr. Niv Zmora (in the group of Prof. Eran Elinav)

Amir Giladi (in the group of Prof. Ido Amit)

Dr. Ayelet Erez

  • Picture of Dr. Hillel Aharoni

    Dr. Hillel Aharoni

    Geometry and deformation of soft materials
    Topological defects in liquid crystals
    Wrinkling patterns

    Homepage

Prof. Michael Sela

Dr. Michal Rivlin

Department of Structural Biology

Head Prof. Deborah Fass

Picture of Prof. Deborah Fass
Head

Prof. Deborah Fass

Office +972-8-934-3214

Overview

The functions of biological systems emerge from the structures of macromolecules, their conformational dynamics, and their higher order assembly. Determination of biomolecular structures and an understanding of their conformational changes and assembly properties provide great insights into biological mechanisms. Much of the research in structural biology at the Weizmann Institute is carried out in the Faculty of Chemistry, using a diverse set of cutting-edge research tools and methods. Investigators in the Structural Biology Department rely on the primary techniques for experimental structure determination, namely X-ray crystallography, NMR, and electron microscopy, but they also employ a variety of other specialized and emerging spectroscopic methods combined with creative molecular engineering to explore macromolecular structures, energetics, and dynamics. Experimental strategies are complemented by computational and theoretical approaches. Among the specific subjects of research in the department are ribosomes, protein chaperones, viruses, extracellular matrices, and biominerals. Processes being investigated include protein aggregation in cells, conformational dynamics of enzymes, formation of skeletal tissues, cell penetration by viruses, DNA recognition by proteins, and protein folding. Efforts are also directed towards the design of potential drugs. The wide variety of research activities in the department are based on a shared appreciation for the physical and chemical foundations of biological activities.

Department of Science Teaching

Head Prof. Anat Yarden

Picture of Prof. Anat Yarden
Head

Prof. Anat Yarden

Office +972-8-934-4044

Overview

The Department is composed of groups working in mathematics, physics, chemistry, computer science, earth and environmental sciences, life sciences, and science and technology for junior-high school. In all these areas there are extensive research and development projects, aimed at (1) studying science and mathematics learning and teaching and their development, (2) producing and implementing improved and up-to-date learning and teaching materials that integrate the use of modern technologies, and (3) providing professional development for teachers, all over Israel. Work is based on an underlying philosophy that considers curriculum development and implementation, teacher professional development, research and evaluation as an interrelated and continuous long-term activity. Research studies focus on cognitive, socio-cultural and affective aspects of learning, teaching and learning to teach science and mathematics, using various research methodologies: quantitative, qualitative and mixed methods.
The department operates four national centers for science teachers (physics, chemistry, biology and science and technology in junior high school) specializing in; the development of leadership among science teachers and in continuous professional development for science teachers using effective models. Another avenue promoted by the department for professional development of science teachers is carried out through the Rothschild-Weizmann Program for Excellence in Science Teaching, which provides science teachers unique opportunities to expand and update their knowledge in science and in science education. In addition, the department runs numerous Professional Learning Communities of science teachers all over Israel. Projects in the department are funded by the Israel Science Foundation (ISF), the German Israeli Foundation (GIF), the Trump Foundation and the Israeli Ministry of Education through the Amos de-Shalit Israeli Center for Science Teaching (MALAM). In addition, the department is involved in several EU projects aiming at enhancing science education both in the formal as well as in the informal level.

Department of Plant and Environmental Sciences

Head Prof. Yuval Eshed

Picture of Prof. Yuval Eshed
Head

Prof. Yuval Eshed

Office +972-8-934-3693

Overview

Plants offer the world its only renewable resource of foods, alternative energy and biotherapeutic compounds. Plants have highly sophisticated short and long-term adaptive mechanisms to the environment as a result of the simple fact that they cannot alter their location during environmental change. Basic understanding of how plants react to the environment and why they grow the way they do are central to devising a rational approach to address three important global challenges, namely to secure more and healthier food, to develop novel plant-based products associated with biotherapeutics and to produce alternative energy resources in the form of biofuels. Research activities in the Department of Plant Sciences are associated with all of the above-mentioned global challenges and range from studies on the function and regulation of isolated genes to their interactive behavior in the context of the whole plant. We have developed extensive in-house genomic, bioinformatics and transgenic infrastructure that enables us to isolate novel genes by gene trapping, knockout or map-based cloning. Cloned genes are manipulated and studied by transgenic analysis to establish their potential in the whole plant. Our research as listed below integrates methodologies of molecular biology, protein modeling, genomics, metabolomics, bioinformatics, system biology, genetics, biochemistry and physiology.
Harnessing light energy and energy transduction in the plant cell: Research is carried out on the basic biophysical phenomenon of photon absorption by chlorophyll through transduction of this energy to ATP and the regulation of energy flux by the plant redox state.
Adaptive response in the plant to the biotic and abiotic environment: Molecular mechanisms that drive the cellular response are investigated under environmental perturbation. Research is directed in understanding the elements that play a role in the recognition of pathogens and the subsequent mounting of plant defense responses as well as in the response of plants to abiotic stresses, such as salt stress.
Plant metabolism and growth: Research is centered around elucidating regulatory metabolic networks for production of essential primary and secondary metabolites as well as understanding gene expression and hormonal networks that control plant metabolism, growth, reproduction and productivity.
Plant genome organization: Molecular tools have been developed to examine the fluidity of the plant genome, as described by transposon element, and the evolution of polyploid plants.

Department of Physics of Complex Systems

Head Prof. Elisha Moses

Picture of Prof. Elisha Moses
Head

Prof. Elisha Moses

Office +972-8-934-3139

Overview

The Department of Physics of Complex Systems has research programs in fundamental and applied physics. Research in optics and atomic physics includes nonlinear optics, ultra fast optics and high harmonic generation, quantum optics, slow light, descrete optics, nano optics and nonlinear microscopy, laser cooling and trapping of atoms and ions, studies of Bose Einstein condensation, precision spectroscopy and quantum information processing. Theoretical and experimental research in soft condensed matter is concentrated on equilibrium and non-equilibrium statistical physics, clustering of data, bioinformatics and systems biology, electrokinetics of ions and charged particles in low dielectric liquids, colloids, soft materials and complex fluids. Experimental and theoretical hydrodynamics concentrates on turbulence, spatio-temporal chaos, turbulent Rayleigh-Benard convection, liquids at interfaces, droplet impact, sedimentation and dynamics of single micro-objects, such as polymers, vesicles, capsules and hydrodynamics of their solutions. Turbulence theory is developed in general and in applications to cloud physics. Classical and quantum chaos, statistics of nodal lines in quantum systems and turbulence are studied theoretically. Mathematical and computational methods for archaeological research are developed. Theoretical physical biology deals with modeling living information systems, their molecular components and the way they evolve. Experimental bio-physics deals with bio-molecules, neural cultures, neurophysics, physics of the brain, physics of bio-systems and decision making in ant colonies.

Pages