Department of Structural Biology 2002

The areas of research in the Department of Organic Chemistry include synthetic and mechanistic organic and organometallic chemistry, novel reactions for organic synthesis, bond activation by metal complexes, polymeric reagents and catalysis. Bioorganic chemistry includes the studies of plant antiviral agents, the molecular mechanism of action of rhodopsin, artificial ion carriers and molecular sensors.

Department of Organic Chemistry 2002

The areas of research in the Department of Organic Chemistry include synthetic and mechanistic organic and organometallic chemistry, novel reactions for organic synthesis, bond activation by metal complexes, polymeric reagents and catalysis. Bioorganic chemistry includes the studies of plant antiviral agents, the molecular mechanism of action of rhodopsin, artificial ion carriers and molecular sensors.

Department of Environmental Sciences and Energy Research 2002

This Department, established in 1990, is dedicated to understanding the complex inter-relationships among the major earth systems and between the human need for energy and the consequent impact on the earth's environment. This requires knowledge of all the interdependent ecosystems that together constitute the "environment," as well as a commitment to improving the manner in which energy is utilized by humans.

Department of Chemical Physics 2002

Research in the Department covers a broad spectrum of topics, including many subjects of current interest in chemistry and physics. Areas of research include theoretical studies of turbulence, the physics of fractals, properties of glass, chaos (classical and quantum mechanical), tunneling and dissipative phenomena, kinetics, and dynamics in surface condensed phases and ultrafast processes.

Department of Neurobiology 2002

Research in Neuroscience in the Department of Neurobiology encompasses a wide variety of subjects, in areas including cellular and molecular biology, neuroanatomy, functional magnetic resonance imaging (fMRI), physiology, pharmacology, psychophysics, and computational sciences.

Basically, the research of the various groups of the Department covers, among others, the following topics:

Department of Molecular Cell Biology 2002

The molecular mechanisms underlying cell structures, dynamics and fate, and their involvement in embryonic development and cancer are among the primary topics of interest of the Department. These include studies on the mode of action of growth factors and the nature of signals triggered by them in target cells following binding to specific surface receptors. Growth regulation is also approached through the study of suppressor genes encoding such proteins as p53, which inhibit proliferation and which may drive cells towards differentiation or apoptosis.

Department of Immunology 2002

Research topics of our Department span the wide range from basic mechanisms in the development, recognition, inter-cellular communication, trafficking, and effector functions of the immune system to the role of these processes in autoimmune disorders, allergies and cancer. Special attention is given to the studies of immunomodulation and immunotherapy of these diseases leading to the development of specific vaccines to viruses, parasites, cancer and autoimmune diseases.

Department of Biological Regulation 2002

The research in the department of Biological Regulation is concentrated on molecular, cellular and physiological studies of processes that collectively control the action of cells, tissues, organs and the entire body. Extensive efforts are directed to the elucidation of the regulators and pathways of the transmission and translation of signals evoked by hormones, as well as growth and death signaling factors.

Department of Plant Sciences 2002

Plants offer the world its only renewable resource of foods, building material and energy. Plants have highly sophisticated short and long-term adaptive mechanisms to the environment as a result of the simple fact that they cannot alter their location during environmental change. Basic understanding of how plants react to the environment and why they grow the way they do are central to devising a rational approach to secure more food, and food of better quality.

Pages