Pages

July 01, 2016

  • Date:05TuesdayJuly 2016

    Piracy of Host Vesicles by Large Viruses in the Ocean

    More information
    Time
    11:15 - 11:15
    Location
    Ullmann Building of Life Sciences
    LecturerDr. Daniella Schatz
    Dr. Assaf Vardi's lab, Department of Plant and Environmental Sciences
    Organizer
    Department of Plant and Environmental Sciences
    Contact
    Lecture
  • Date:05TuesdayJuly 2016

    MCB - Student Seminar

    More information
    Time
    12:15 - 14:00
    Title
    The role of the G-protein coupled receptor PAC1 in the regulation of homeostasis and behavior and Understanding single-cell gene expression data using Pareto optimality theory
    Location
    Wolfson Building for Biological Research
    LecturerDr. Jakob Biran and Dr. Yael Korem
    Organizer
    Department of Molecular Cell Biology
    Contact
    Lecture
  • Date:10SundayJuly 2016

    The Causes of Crohn’s Disease

    More information
    Time
    11:00 - 11:00
    Location
    Wolfson Building for Biological Research
    LecturerProf. Anthony W. Segal
    Organizer
    Department of Systems Immunology
    Contact
    Lecture
  • Date:10SundayJuly 2016

    Kofiko - Children's theater

    More information
    Time
    17:30 - 17:30
    Location
    Michael Sela Auditorium
    Contact
    Cultural Events
  • Date:11MondayJuly 2016

    Super Resolution Microscopy: Symposium and Hands-on Sessions with a STED Microscope

    More information
    Time
    09:00 - 14:00
    Location
    Arthur and Rochelle Belfer Building for Biomedical Research
    Contact
    Lecture
  • Date:12TuesdayJuly 2016

    Population receptive fields in the human ventral stream and their role in face perception

    More information
    Time
    12:30 - 12:30
    Location
    Gerhard M.J. Schmidt Lecture Hall
    LecturerProf. Kalanit Grill-Spector
    Dept of Psychology and Stanford Neurosciences Institute Stanford University, CA
    Organizer
    Department of Brain Sciences
    Contact
    AbstractShow full text abstract about The cortical system for processing faces is a model system f...»
    The cortical system for processing faces is a model system for studying the functional neuroanatomy of ventral temporal cortex and its role in perception for two reasons. First, the functional organization of the cortical face system is well understood. Second, activations in ventral face-selective regions are causally related to face perception. Here, I will describe recent results from our research elucidating the computations performed by population receptive field (pRFs) in the cortical system for face perception. In contrast to predictions of classical theories, recent data from my lab reveals that computations in face-selective regions in human ventral temporal cortex can be characterized with a computational pRF model, which predicts the location and spatial extent of the visual field that is processed by the neural population in a voxel. Our research characterizes pRF properties of ventral face-selective regions revealing three main findings. First, pRFs illustrate a hierarchical organization within the face system, whereby pRFs become larger and more foveal across the ventral hierarchy. Second, attention to faces modulates pRFs in face-selective regions, consequently enhancing the representation of faces in the peripheral visual field where visual acuity is the lowest. Third, our research shows that pRF properties in face-selective regions are behaviorally relevant. We find that face perception abilities are correlated with pRF properties: participants with larger pRFs perform better in face recognition than participants with smaller pRFs. These data suggest that computations performed by pRFs in face-selective regions may form a neural basis for holistic processing necessary for face recognition. Overall, these data highlight the importance of elucidating computational properties of neural populations in ventral temporal cortex as they offer a new mechanistic understanding of high-level visual processes such as face perception.
    Lecture
  • Date:14ThursdayJuly 2016

    Life Sciences Special Seminar

    More information
    Time
    11:00 - 12:00
    Title
    Human Genomics, Precision Medicine, and Improving Human Health
    Location
    Wolfson Building for Biological Research
    LecturerProf. Eric Green
    Director, National Human Genome Research Institute, NIH
    Contact
    Lecture
  • Date:16SaturdayJuly 2016

    Halfon 6 Alek Mahazemer

    More information
    Time
    21:00 - 21:00
    Location
    Michael Sela Auditorium
    Contact
    Cultural Events
  • Date:20WednesdayJuly 2016

    Harie sheahav tut - chilldren's theater

    More information
    Time
    17:30 - 19:00
    Location
    Michael Sela Auditorium
    Contact
    Cultural Events
  • Date:22FridayJuly 2016

    Nathan's Friends - Hakol zahav

    More information
    Time
    20:00 - 20:00
    Location
    Michael Sela Auditorium
    Contact
    Cultural Events
  • Date:25MondayJuly 2016

    Very Early Onset IBD – From Genes to Function. A Journey from Mice to Man and Back to Mice Again

    More information
    Time
    11:00 - 11:00
    Location
    Wolfson Building for Biological Research
    LecturerProf. Scott B. Snapper
    Director, IBD Center and Basic & Translational Research (Children’s Hospital, Brigham and Women’s Hospital) Professor of Medicine, Harvard Medical School
    Organizer
    Department of Systems Immunology
    Contact
    Lecture
  • Date:26TuesdayJuly 2016

    Diversity of Macrophage Transcriptional Profiles across the Spectrum of Rheumatic Disease

    More information
    Time
    11:00 - 11:00
    Location
    Wolfson Building for Biological Research
    LecturerProf. Harris Perlman
    Organizer
    Department of Systems Immunology
    Contact
    Lecture
  • Date:27WednesdayJuly 2016

    Guest Seminar

    More information
    Time
    13:00 - 13:00
    Title
    "Multiple Myeloma: a phenotypic perspective from bench to bedside"
    Location
    Wolfson Building for Biological Research
    LecturerDr. Bruno Paiva
    Scientific Coordinator CIMA LAB Diagnostics/ Director flow Cytometry Core departments of Hematology & Immunology, University of Navarra, Spain
    Organizer
    Department of Systems Immunology
    Contact
    Lecture
  • Date:30SaturdayJuly 2016

    Meni Ozeri - Stand Up

    More information
    Time
    21:30 - 21:30
    Location
    Michael Sela Auditorium
    Contact
    Cultural Events
  • Date:10WednesdayAugust 2016

    G-INCPM Special Seminar - Dr. Gad Asher, Dept. of Biomolecular Sciences, Weizmann - "A Circadian View of Nutrition and Metabolism

    More information
    Time
    11:00 - 12:30
    Location
    Edna and K.B. Weissman Building of Physical Sciences
    LecturerProf. Gad Asher
    Dept. of Biomolecular Sciences, Weizmann
    Organizer
    Department of Biomolecular Sciences
    Contact
    AbstractShow full text abstract about Circadian clocks are positioned at the cross road between nu...»
    Circadian clocks are positioned at the cross road between nutritional cues and metabolic control. Thus, studying metabolism from a temporal and spatial perspective provides a unique niche that is expected to unveil novel fundamental principles related to basic metabolism and their nutritional control. In recent years my lab employed different methodologies, from biochemical approaches that identify protein-metabolite interactions through measurements of metabolic outputs in intact cells and living animals to high-throughput proteomics and metabolomics, to examine temporal and spatial aspects of metabolism. During my talk, I will discuss several examples emerging from our work on different groups of metabolites (e.g., lipids, polyamines) and on cellular metabolic processes (e.g., mitochondrial function) that shed new light in respect to their temporal and spatial intracellular organization and their nutritional control by different dietary regimens.

    Lecture
  • Date:18ThursdayAugust 2016

    Protein folding and dynamics from single-molecule measurements

    More information
    Time
    14:00 - 14:00
    Location
    Gerhard M.J. Schmidt Lecture Hall
    LecturerProf. Dmitrii E Makarov
    Department of Chemistry, University of Texas
    Organizer
    Clore Center for Biological Physics
    Contact
    Lecture
  • Date:18ThursdayAugust 2016

    "Protein folding and dynamics from single-molecule measurements"

    More information
    Time
    14:00 - 15:00
    Title
    Special Joint Seminar
    Location
    Gerhard M.J. Schmidt Lecture Hall
    LecturerProf. Dmitrii E Makarov
    Department of Chemistry University of Texas
    Organizer
    Clore Center for Biological Physics
    Contact
    AbstractShow full text abstract about In the past two decades, single-molecule experiments have ev...»
    In the past two decades, single-molecule experiments have evolved from being state-of-the-art prof-of-principle demonstrations to nearly routine tools of modern biophysics, enabling one, for example, to monitor molecular processes directly as they unfold in the cell. Yet because of the relative sluggishness of the common probes, deciphering single-molecule signals to infer molecular dynamics remains an elusive goal. In this talk I will report on recent joint efforts of my group with experimentalists toward this goal using the example of one of the most fundamental problems in biophysics, protein folding. I will discuss how intrinsic protein motion can be deduced from random photon sequences in single-molecule fluorescence resonance energy transfer experiments or from the movement of micrometer-sized force probes in single-molecule pulling studies. I will further describe some of the new lessons about protein folding and dynamics learned from such studies.
    Lecture
  • Date:24WednesdayAugust 2016

    G-INCPM - Special Seminar - Prof. Matthias Nees, Institute if Biomedicine, Univ. of Turku, Finland - "Combining Speed of Analysis with Complex Tissue Models for Physiologically Relevant High-Content Screening"

    More information
    Time
    11:00 - 12:30
    Location
    Edna and K.B. Weissman Building of Physical Sciences
    LecturerProf. Matthias Nees
    Institute of Biomedicine Univ. of Turku Finland
    Organizer
    Department of Biomolecular Sciences
    Contact
    AbstractShow full text abstract about In vitro model systems used in drug discovery typically do n...»
    In vitro model systems used in drug discovery typically do not address the complex architecture of human disease tissues. Only few approaches aim to faithfully recapitulate the complexity, heterogeneity and cellular dynamics e.g. in epithelial tissues and carcinomas. The most important aspects relate to the (tumor-) microenvironment, including cell-cell and cell-matrix interactions, inflammation and the role of stromal components. All of these elements can have a significant, but often underestimated impact on differentiation, normal and abnormal tissue functions, or drug response versus drug resistance.

    The basis for performing informative high content screening campaigns with such complex tissue models in vitro is access to fast, automated image analysis. We have developed a software platform (AMIDA, Automated Morphometric Image Data Analysis) that captures a large number of morphometric features in an unsupervised fashion. This approach enables us to capture much of the inherent complexity and dynamics of microtissues, yet still allows high experimental throughput. This screening platform is ideally suited for investigating a broad spectrum of defined, biological questions in drug discovery as well as personalised medicine.

    Technology and screening platform are applicable for multiple types of research, such as quantitatively measuring the response of primary cancer cells or cell lines to drugs, siRNAs or other perturbations. Image analysis algorithms can also be adapted towards specific applications in neurodegenerative diseases, stem cell research, and to quantitate the interaction of epithelial cells with immune, adipocytes or mesenchymal stem cells.
    Lecture
  • Date:25ThursdayAugust 2016

    Full humanisation of the mouse immunoglobulin loci

    More information
    Time
    10:00 - 10:00
    Location
    Wolfson Building for Biological Research
    LecturerProf. Allan Bradley
    Kymab, Cambridge MA
    Organizer
    Department of Brain Sciences
    Contact
    AbstractShow full text abstract about Professor Bradley is internationally recognized as a pioneer...»
    Professor Bradley is internationally recognized as a pioneer in developing the techniques, technology and tools for genetic manipulation in the mouse over more than 3 decades. He served as Director of the Welcome Trust Sanger Institute from 2000 to 2010. He was honored by election to the fellowship of the Royal Society in 2002. Among many projects that Dr. Bradley has established and led, is the international project to systematically knockout all genes in the mouse genome, the most ambitious use of ES-cell technology ever attempted. Over the last 30 years, Dr. Bradley has authored more than 280 publications. In his lecture, Dr. Bradley will be describing the scientific history and the technology behind the creation of the Kymouse strains which are transgenic for the total human immunoglobulin gene diversity. The platform provides a valuable means to isolate therapeutic monoclonal antibodies. Kymab has also developed single B cell-based methods to capture both the heavy and light chains of antibodies at scale. Combined with deep sequencing of millions of B cells we are able to build networks of histories of B cell families which we use to isolate rare antibodies with unique properties. The combined use of Kymouse with B cell network analysis, facilitates vaccine antigen discovery and predictive pre-clinical assessment of candidate vaccine antigens prior to clinical trials in humans.
    Lecture
  • Date:02FridaySeptember 2016

    Nathan's Friends - Greek love

    More information
    Time
    20:00 - 22:45
    Title
    With Dionysis
    Location
    Michael Sela Auditorium
    Contact
    Cultural Events

Pages