The magnetoelectric effect in solids refers to the induction of magnetization with the application of an electric field or the induction of an electric polarization with the application of a magnetic field. Multiferroics are a special class of magnetoelectric materials with the coexistence of spontaneous magnetic and polar orders. In the past few decades, multiferroics are at the forefront of contemporary condensed matter physics. These materials have the potential for many practical applications including transducers and sensors for magnetic fields, spintronics, and four state logic energy-efficient memory devices. Geometrically frustrated magnets are promising materials where exotic arrangements of spins lead to the discovery of many interesting multiferroic properties. The low-dimensional geometrically frustrated magnets are natural playgrounds for various exotic spin arrangements. These systems can have varieties of spin arrangements like spin chains, ribbons, ladders, Kagome layers, and staircase-like spin patterns etc. In low-dimensional magnetic systems, the presence of complex interplay among the nearest and next-nearest atomic interactions, and large spin-orbit coupling leads to the generation of many complex magnetic and electric ground states. In my talk, I will present findings of magnetoelectricity in some geometrically frustrated metal oxides.