-
Prof. Reshef Tenne
Inorganic nanotubes from ternary "misfit" layered compoundsCollaboration with: Dr. R. Arenal, Laboratorio de Microscopías Avanzadas, Instituto de Nanociencia de Aragón, Universidad de Zaragoza, 50018 Zara-goza, Spain Dr. Luc Lajaunie, Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Uni-versidad de Cádiz, Campus Río San Pedro S/N, Puerto Real 11510, Cádiz, Spain Prof. Ernesto Joselevich, Department of Materials and Interfaces, Weizmann Institute, Rehovot 76100, Israel Dr. Lothar Houben, Chemical Research Support Department, Weizmann Institute, Rehovot 76100, Israel Prof. Alla Zak, Holon Institute of Technology, Israel Prof. Shmuel Kenig and Prof. Hanna Dodiuk, Shenkar College, Israel Prof. Yoshihiro Iwasa, University of Tokyo and the Riken Institute. Japan Prof. Janina Maultzsch, Department of Physics, FAU Erlangen-Nürnberg, 91058 Erlangen, Germany Dr. Iddo Pinkas, Chemical Research Support Department, Weizmann Institute, Rehovot 76100, IsraelSynthesis of nanotubes from misfit layered compounds (MLC), their structural electrical and optical characterizationOptical properties of WS2 and MoS2 nanotubes
Homepage
-
Dr. Noam Tal Hod
Physics analysis with the ATLAS experiment at the LHC (CERN)Collaboration with: NIKHEF, The University of Michigan, University of WuppertalDirect tests of lepton universalitySearch for new physics beyond the standard model in dilepton+X final states (heavy resonances, contact interactions, clockwork-like signals, lepton flavour violation)Upgrade of the ATLAS muon spectrometerCollaboration with: Multiple institutions (mostly from Canada, Chile, Russia, China and the USA)Construction and integration of the sTGC detectors in the New Small Wheel of ATLASLUXE experiment at DESYCollaboration with: DESY, Albert-Ludwig Universitaet Freiburg, Max-Planck Institute of Structure and Matter, Helmholtz-Zentrum Jena, Friedrich-Schiller Universitaet Jena, Queens University Belfast, University College London, University of Plymouth, Tel Aviv University, TechnionUnparalleled tests of strong-field QED in collisions between high-energy electron/photon beam and high-intensity laser pulses. The Schwinger limit is expected to be reached (at the collision centre of mass frame) for the first time in a clean environment.Development of solid-state detectors for tracking and calorimetryDesign, simulation and analysis of the entire experimental setupProbing novel beyond the standard model physics which may be enhanced in the presence of strong-fields, e.g. production of axion-like particles which are associated with solution to many of the outstanding problems in particle physics, and which can be furthermore linked to the origin of dark matter.
Homepage
-
Prof. Joel Sussman
3D Structure Funciton Studies or proteins related to AutismCollaboration with: Israel Silman3D Structure Fucntions studies of ParaoxonaseCollaboration with: Dan Tawfik & Israel SilmanApplication of ultra rapid X-ray diffraction methods to study the enzymatic mechanism of AChE in real time.Collaboration with: Israel SilmanStructure based drug design studies on AChE and beta-secretase, including studies of complexes with transition state analogs; potential drugs for the treatment of Alzheimer's disease; and snake neurotoxins.Collaboration with: Israel SilmanX-ray structural analysis and molecular biology studies on proteins from the nervous system, including acetylcholinesterase (AChE), human, torpedo, drosophila, and krait; butyrylcholinesterase; neural cell adhesion proteins with sequence similarity to AChCollaboration with: Israel Silman3D Structure Funciton of proteins related to Gaucher DiseaseCollaboration with: Tony Futerman & Israel SilmanVisualization of 3D Protein Structures via new web based tool ProteopediaCollaboration with: Jaime Prilusky & Israel Silman
Homepage
-
Dr. Ravid Straussman
Tumor microenvironment-mediated chemoresistanceTumor microbiomeEx-vivo Cultures of Tumor Tissues for Rapid Tailoring of Anti-Cancer TherapyPhenotypic and Mechanistic Characterization of Drug Tolerant Persister Cancer CellsSignalome: A Novel Approach for the Analysis of Signaling Pathway Activity in Cancer
Homepage
-
Prof. Adi Stern
Quantum interference phenomena in the fractional Quantum Hall effect. Electronic transport in strong magnetic fields.Non-abelian electronic states - quantum Hall states, topological superconductors and Majorana fermions.Fractionalized topological phases - how to construct them, how to measure them, and how to use them for topological quantum computationLow density two dimensional electronic systems.One dimensional electronic systems - electronic transport in the presence of interactions.
