Pages
אפריל 27, 2017
-
Date:23שלישימאי 2023הרצאה
Exploring sex-specific regulation of aging and health
More information שעה 10:00 - 11:00מיקום בניין לביוכימיה על שם נלה וליאון בנוזיומרצה Dr. Itamar Harel
Dept. of Genetics, HUJIמארגן המחלקה למדעים ביומולקולרייםצרו קשר תקציר Show full text abstract about Bio: Experimental biology of vertebrate aging and age-relate...» Bio: Experimental biology of vertebrate aging and age-related diseases: http://harel-lab.com/
Itamar Harel received his PhD in developmental biology at the Weizmann Institute of Science, and then trained in aging research at Stanford University. In 2018 he joined the Department of Genetics at the Hebrew University as Assistant Professor. The Harel lab is exploring fundamental questions in aging biology, such as why is aging such a strong driver of disease? To address a major challenge in aging research, Itamar has developed a comprehensive genetic platform for rapid exploration of aging and disease in a naturally short-lived vertebrate. The findings by the Harel lab have clinical implications for developing new strategies for modeling and treating age-related diseases, and for developing pro-longevity interventions. -
Date:23שלישימאי 2023הרצאה
Bacterial lag phase shortening is triggered by methyl groups – a primer for phototroph-heterotroph interactions?
More information שעה 11:30 - 12:30מיקום בניין לביוכימיה על שם נלה וליאון בנוזיומרצה Dr. Martin Sperfeld
Segev Labמארגן המחלקה למדעי הצמח והסביבהצרו קשר -
Date:23שלישימאי 2023הרצאה
The neurocircuit underlying social approach and avoidance behavior
More information שעה 12:30 - 13:30מיקום אולם הרצאות ע"ש גרהרד שמידטמרצה Prof. Camilla Bellone
Dept of Basic Neurosciences Faculty of Medicine University of Genevaמארגן המחלקה למדעי המוחצרו קשר תקציר Show full text abstract about The ability to approach or avoid conspecifics is essential f...» The ability to approach or avoid conspecifics is essential for survival in many species, and the nature of the social interaction often determines it. Positive or rewarding interactions with conspecifics lead individuals to approach them, while aversive or threatening interactions lead individuals to avoid them. The rewarding or aversive nature of these interactions is defined as social valence. I will discuss the neuronal circuits and mechanisms underlying social valance encoding.
-
Date:23שלישימאי 2023הרצאה
Advances of Liquid Biopsy Diagnostics and Structural Models in the Development of Data-Driven AI in Future Hospitals
More information שעה 14:00 - 15:00מיקום אולם הרצאות ע"ש גרהרד שמידטמרצה Dr. Milana Frenkel-Morgenstern
Azrieli Faculty of Medicine Bar-Ilan Universityמארגן המחלקה לביולוגיה מבנית וכימיתצרו קשר -
Date:24רביעימאי 2023הרצאה
Simplifying Multicolor Panel Construction for Conventional and Spectral Flow Cytometers
More information שעה 10:00 - 11:00מיקום בניין אולמן למדעי החייםמרצה Dr. Jiri Sinkora
Application Specialist at BDמארגן המחלקה לתשתיות מחקר מדעי החייםצרו קשר -
Date:24רביעימאי 2023הרצאה
Machine Learning and Statistics Seminar
More information שעה 11:15 - 12:30כותרת Cycle-edge message passing for group and non-group synchronizationמיקום בניין יעקב זיסקינדמרצה Prof. Gilad Lerman
U. Minnesotaמארגן המחלקה למדעי המחשב ומתמטיקה שימושיתצרו קשר תקציר Show full text abstract about The general synchronization problem asks to recover states o...» The general synchronization problem asks to recover states of objects from their corrupted relative measurements. When the states are represented by group elements (e.g. 3-D rotations or permutations) this problem is known as group synchronization. In several applications, the algebraic structure of the states is more complicated, for example, the states can be represented by partial permutations. The synchronization problem has many applications, in particular, to structure-from-motion (SfM), where one needs to estimate the 3D structure of a scene from a set of its projected 2D images. I will first describe a general framework for group synchronization, the Cycle-Edge Message Passing (CEMP), and then explain its generalization to non groups, by exemplifying the case of partial permutation synchronization. I will emphasize mathematical difficulties, review some mathematical guarantees for the proposed methods and also demonstrate an application. This is a joint work with Shaohan Li and Yunpeng Shi.
-
Date:24רביעימאי 2023הרצאה
טכנולוגיות דימות למחקר פרה-קליני
More information שעה 13:00 - 14:00כותרת Spotlight on Science seriesמיקום אולם הרצאות ע"ש גרהרד שמידטמרצה Dr. Inbal Biton צרו קשר -
Date:28ראשוןמאי 2023הרצאה
Studying the role of fluids in the mantle through natural samples and experiments
More information שעה 11:00 - 12:00מיקום בניין משפחת זוסמןמרצה Ronit Kesel
Institute of Earth Sciences, The Hebrew University of Jerusalemמארגן המחלקה למדעי כדור הארץ וכוכבי הלכתצרו קשר תקציר Show full text abstract about Mantle fluids are the primary carriers of key volatile eleme...» Mantle fluids are the primary carriers of key volatile elements that make the Earth’s long-term planetary habitability possible. The interaction of such volatile-rich fluids with the mantle rocks, especially the sub-cratonic lithospheric mantle leads to alteration of the mantle as well as its melting. High-density fluids encased inside diamonds are the best natural representation of mantle fluid compositions, suggesting their compositions are saline, silicic or carbonatitic. However, the origin and role in the mantle as well as their role in altering the mantle are still unclear.
In my research, we approach these questions by experimentally simulating the interaction of volatile-rich fluids with mantle rocks at known pressure and temperature relevant to the mantle. Examining different mixtures of volatiles (H2O and CO2) and mantle rocks (peridotite and eclogite), we attempt to understand the origin of each type of fluid found in diamonds as well as study the effect of such interaction on the mantle chemistry and mineralogy.
Compiling many experimental studies reveals that fluids ranging from silicic to low-Mg carbonatitic are formed in systems of eclogite+H2O+CO2, the more CO2 in the system, the more carbonatitic the fluid is. Fluids ranging from low-Mg carbonatitic to high-Mg carbonatitic in nature are the results of the formation of fluids in the peridotite-H2O-CO2 system. The more CO2 in the system, the more high-Mg carbonatitic the fluid composition is. These results suggest that the various fluids found in the mantle result from changes in the bulk composition of the mantle rocks.
The mantle rocks are significantly affected during percolation of such fluids through them. For example, experimentally interacting silicic fluid with peridotite demonstrated the formation of various metasomatic peridotites as a function of pressure and temperature, composing of amphibole and mica. The mineral assemblages, chemistry, and P-T conditions in the experiments are similar to those found in metasomatic xenoliths from Kimberly, South Africa, and surrounding localities.
-
Date:28ראשוןמאי 2023הרצאה
Magnetic Resonance Seminar: "Quantum sensing of out-of-equilibrium systems with magnetic resonance”
More information שעה 16:00 - 17:00מיקום בניין פרלמן למדעי הכימיהמרצה Dr. Gonzalo A. Alvarez
Centro Atómico Bariloche, Instituto Balseiro & Instituto de Nanociencia y Nanotecnologiaמארגן מרכז למדע וטכנולוגיה קוונטיתצרו קשר תקציר Show full text abstract about Reliable processing of quantum information is crucial for qu...» Reliable processing of quantum information is crucial for quantum technologies development. Characterizing the ubiquitous out-of-equilibrium quantum systems [1-3] is essential for designing optimal control and quantum sensing strategies. However, this task is highly challenging due to the complex high-order correlations and non-stationary nature. In this talk, I will present methods to characterize the decoherence of out-of-equilibrium quantum systems [1,4-6]. Using quantum simulations with Solid-State Nuclear Magnetic Resonance, we quantify "out-of-time order correlations" (OTOCs [2-3]) to define a critical threshold in disturbances to achieve reliable control of large quantum systems [1,4-5]. Furthermore, we develop a framework for quantum sensing the dynamics of out-of-equilibrium systems [6]. The sensor manifests spectral and non-Markovian properties, providing a quantum technology to probe time-correlation properties and mitigate the decoherence effects of non-stationary environments.
[1] G. A. Alvarez, D. Suter, R. Kaiser. Science 349, 846 (2015).
[2] R.J. Lewis-Swan, A. Safavi-Naini, A.M. Kaufman, A.M. Rey. Nat. Rev. Phys. 1, 627 (2019).
[3] B. Swingle. Nat. Phys. 14, 988 (2018).
[4] F.D. Dominguez, M.C. Rodriguez, R. Kaiser, D. Suter, G.A. Alvarez. Phys. Rev. A 104, 012402 (2021).
[5] F.D. Dominguez, G.A. Alvarez. Phys. Rev. A 104, 062406 (2021).
[6] M. Kuffer, A. Zwick, G.A. Alvarez. PRX Quantum 3, 020321 (2022).
-
Date:29שנימאי 202331רביעימאי 2023כנסים
Ultrafast, Nonlinear and Quantum Optics
More information שעה 08:00 - 08:00מיקום מרכז כנסים על-שם דויד לופאטייושב ראש Talia Tzahorמארגן המחלקה לביולוגיה מבנית וכימית , אגף בינוי ותחזוקהדף בית -
Date:29שנימאי 2023הרצאה
Systems Biology Seminar 2022-2023
More information שעה 10:00 - 11:00מיקום בניין ארתור ורושל בלפר למחקר ביורפואימארגן מכון עזריאלי למערכות ביולוגיותצרו קשר -
Date:29שנימאי 2023סימפוזיונים
Solar Panels for Light-to-Chemical Conversion
More information שעה 11:00 - 12:15כותרת 2023 G.M.J. SCHMIDT MEMORIAL LECTUREמיקום אולם הרצאות ע"ש גרהרד שמידטמרצה Prof. Erwin Reisner
Department of Chemistry, University of Cambridgeמארגן הפקולטה לכימיהדף בית צרו קשר תקציר Show full text abstract about Solar panels are well known to produce electricity, but they...» Solar panels are well known to produce electricity, but they are also in early-stage development for the production of sustainable fuels and chemicals. These panels mimic plant leaves in shape and function as demonstrated for overall solar water splitting to produce green H2 by the laboratories of Nocera and Domen.1,2
This presentation will give an overview of our recent progress to construct prototype solar panel devices for the conversion of carbon dioxide and solid waste streams into fuels and higher-value chemicals through molecular surface-engineering of solar panels with suitable catalysts. Specifically, a standalone ‘photoelectrochemical leaf’ based on an integrated lead halide perovskite-BiVO4 tandem light absorber architecture has been built for the solar CO2 reduction to produce syngas.3 Syngas is an energy-rich gas mixture containing CO and H2 and currently produced from fossil fuels. The renewable production of syngas may allow for the synthesis of renewable liquid oxygenates and hydrocarbon fuels. Recent advances in the manufacturing have enabled the reduction of material requirements to fabricate such devices and make the leaves sufficiently light weight to even float on water, thereby enabling application on open water sources.4 The tandem design also allows for the integration of biocatalysts and the selective and bias-free conversion of CO2-to-formate has been demonstrated using enzymes.5 The versatility of the integrated leaf architecture has been demonstrated by replacing the perovskite light absorber by BiOI for solar water and CO2 splitting to demonstrate week-long stability.6
An alternative solar carbon capture and utilisation technology is based on co-deposited semiconductor powders on a conducting substrate.2 Modification of these immobilized powders with a molecular catalyst provides us with a photocatalyst sheet that can cleanly produce formic acid from aqueous CO2.7 CO2-fixing bacteria grown on such a ‘photocatalyst sheet’ enable the production of multicarbon products through clean CO2-to-acetate conversion.8 The deposition of a single semiconductor material on glass gives panels for the sunlight-powered conversion plastic and biomass waste into H2 and organic products, thereby allowing for simultaneous waste remediation and fuel production.9 The concept and prospect behind these integrated systems for solar energy conversion,10 related approaches,11 and their relevance to secure and harness sustainable energy supplies in a fossil-fuel free economy will be discussed. -
Date:29שנימאי 2023הרצאה
Foundations of Computer Science Seminar
More information שעה 11:15 - 12:30כותרת The Randomized k-Server Conjecture is False!מיקום בניין יעקב זיסקינדמרצה Yuval Rabani
Hebrew University of Jerusalemמארגן המחלקה למדעי המחשב ומתמטיקה שימושיתצרו קשר -
Date:30שלישימאי 2023הרצאה
Site-Specific Isopeptide Bond Formation: A Powerful Tool for the Generation of Potent and Nontoxic Antimicrobial Peptides
More information שעה 10:00 - 11:00מיקום בניין לביוכימיה על שם נלה וליאון בנוזיומרצה Dr. Naiem Wani
Dept. of Biomolecular Sciences-WISמארגן המחלקה למדעים ביומולקולרייםצרו קשר -
Date:30שלישימאי 2023הרצאה
Homogeneous (De)hydrogenative Catalysis for a Circular Economy
More information שעה 11:00 - 12:00מיקום אולם הרצאות ע"ש גרהרד שמידטמרצה Dr. Amit Kumar
School of Chemistry, University of St. Andrews, St. Andrews, KY169ST, UKמארגן המחלקה לכימיה מולקולרית ולמדע חומריםצרו קשר תקציר Show full text abstract about The development of sustainable methods for the closed-loop p...» The development of sustainable methods for the closed-loop production and recycling of plastics is an important challenge of current times. Reactions based on catalytic (de)hydrogenation are atom-economic, and sustainable routes for organic transformations.1 Using the following examples, this lecture will discuss the application of homogeneous (de)hydrogenative catalysis for the synthesis and degradation of polymers to enable a circular economy: (a) synthesis of polyamides/nylons from the ruthenium catalysed dehydrogenative coupling of diamines and diols and its reverse reaction i.e. hydrogenative depolymerisation of nylons,2 (b) synthesis of polyureas from the ruthenium/manganese catalysed dehydrogenative coupling of diamines3,4 and methanol, and its reverse reaction, i.e. hydrogenative depolymerisation of polyureas (Figure 1B)5, (c) Synthesis of polyethyleneimines from manganese catalysed coupling of ethylene glycol and ethylenediamine or the self-coupling of ethanolamine,6 and (d) Synthesis of polyureas and polyurethanes from the dehydrogenative coupling of diformamides and diamines/diols and its reverse reaction i.e. hydrogenative depolymerisation of polyureas and polyurethanes to diformamides and diamines/diols.7 Some applications of some of the polymers made using dehydrogenative processes in the field of batteries will also be discussed.8 -
Date:30שלישימאי 2023הרצאה
Bacterial community indicators to monitor the health of our changing environment
More information שעה 11:30 - 12:30מיקום https://weizmann.zoom.us/j/92703563162?pwd=cW5pb0Nzcm1XS2RObyt6NVZHRUFHUT09מרצה Prof. Gavin Lear
University of Aucklandמארגן המחלקה למדעי הצמח והסביבהצרו קשר -
Date:30שלישימאי 2023הרצאה
Cognitive neuroscience of learning and memory in human infants
More information שעה 12:30 - 13:30מיקום אולם הרצאות ע"ש גרהרד שמידטמרצה Prof. Nick Turk-Browne
Dept of Psychology, Yale Universityמארגן המחלקה למדעי המוחצרו קשר תקציר Show full text abstract about In this talk, I will present the approach my lab has develop...» In this talk, I will present the approach my lab has developed for performing fMRI studies in awake infants during cognitive tasks. I will share some of our recent studies and highlight some of the big open questions that remain to be addressed, with potential to reveal the brain systems underlying how infants perceive and attend to their environment, why infants are such proficient learners, and why we all have amnesia for infant experiences. Despite countless limitations and challenges at present, this work suggests that awake infant fMRI could become more feasible, useful, and ubiquitous in cognitive neuroscience.
-
Date:30שלישימאי 2023הרצאה
Electrosome assembly: a first look at the structural principles underlying ion channel biogenesis
More information שעה 14:00 - 15:00מיקום אולם הרצאות ע"ש גרהרד שמידטמרצה Prof. Daniel Minor
Departments of Biochemistry & Biophysics University of California San Franciscoמארגן המחלקה לביולוגיה מבנית וכימיתצרו קשר -
Date:01חמישייוני 2023הרצאה
Evolution in a Cup – use of small-scale bioreactors to study dynamics of microorganism
More information שעה 09:00 - 10:00מיקום בניין ע"ש מקס ולילאן קנדיוטימרצה Dr. Ghil Jona
The Bacteriology & Genomic Repository Unitמארגן המחלקה לתשתיות מחקר מדעי החייםצרו קשר -
Date:01חמישייוני 2023סימפוזיונים
Physics Colloquium
More information שעה 11:15 - 12:30כותרת Elastic Strain Engineering for Unprecedented Propertiesמיקום בניין הפיזיקה ע"ש עדנה וק.ב. וייסמןמרצה Prof. Ju Li
MIT – Cambridge, Massachusetts, USAמארגן הפקולטה לפיזיקהצרו קשר תקציר Show full text abstract about The emergence of “ultra-strength materials” that can withsta...» The emergence of “ultra-strength materials” that can withstand significant fractions of the ideal strength at component scale without any inelastic relaxation harbingers a new field within mechanics of materials. Recently, we have experimentally achieved more than 13% reversible tensile strains in Si that fundamentally redefines what it means to be Si, and ~7% uniform tensile strain in micron-scale single-crystalline diamond bridge arrays, where thousands of transistors and quantum sensors can be integrated in one diamond microbridge. Elastic Strain Engineering (ESE) aims to endow material structures with very large stresses and stress gradients to guide electronic, photonic, and spin excitations and control energy, mass, and information flows. As “smaller is stronger” for most engineering materials at room temperature, a much larger dynamical range of tensile-and-shear deviatoric stresses for small-scale structures can be achieved, as the defect (e.g., dislocation, crack) population dynamics change from defect-propagation to defect-nucleation controlled. Thus, all six stress components can be used to tune the physical and chemical properties of a material like a 7-element alloy. Four pillars of ESE need to be addressed experimentally and computationally: (a) making materials and structures that can withstand deviatoric elastic strain patterns that are exceptionally large and extended in space-time volume, inhomogeneous, dynamically reversible, or combinations thereof, (b) measuring and understanding how functional properties such as photonic and electronic characteristics vary with imposed elastic strain tensor, (c) characterizing and modeling the mechanisms of stress relaxations; the goal is not to use them for forming but to defeat them at service temperatures (usually room temperature and above) and extended timescales, and (d) computational design based on first principles, e.g. predicting ideal strength surface, topological changes in band structures, etc. assisted by machine learning.
