-
Prof. Avigdor Scherz
Quantification of atoms, groups and molecules electronegati using metal substituted bacteriochlorophylls and application to chemical reactivity.Resolving the forces which drive membrane protein assembly.The mechenism behind generation of reactive oxygen species (ROS) by illuminating novel bacteriochlorophyll derivatives and their application in photodynamic therapy (PDT) of tumors.
Homepage
-
Prof. Jacob Sagiv
Supramolecular Architecture at Interfaces (with R. Maoz)Supramolecular Surface Chemistry: Bottom-up Nanofabrication using Planned Self-Assembling Mono- and Multilayer Systems (with R. Maoz)Constructive Lithography: Contact Electrochemical Surface Patterning on Lateral Length Scales from Nanometer to Centimeter (with R. Maoz)
-
Prof. Varda Rotter
Molecular mechanisms controlling the expression of p53 in normal cells and its deregulation in cancer cellsInvolvement of p53 in cell differentiation and apoptosis: <I>in vivo</I> and in vitro models.Cellular proteins that specifically complex with the p53 protein.Cellular proteins that are induced upstream or downstream to the p53 protein following genotoxic stress.
Homepage
-
Prof. Vered Rom-Kedar
Hamiltonian systems - theory and applicationsCollaboration with: M. Radnovic, A. Rapoport, E. Shlizerman, D. TuraevNear-integrable systemsThe Boltzmann ergodic hypothesis and soft billiards.Chaotic scattering.Resonant surface waves.Perturbed nonlinear Schrodinger equation.Mathematical models of the hematopoietic system and their medical implicationsCollaboration with: R. Malka, E. Shochat.Chaotic mixing of fluid flowsCollaboration with: R. Aharon, H. Gildor
Homepage
-
Dr. Michal Rivlin
Mechanisms underlying the computation of motion direction in the retina.Dynamic computations in retinal circuits.How do retinal targets integrate and interpret the visual signal?Role of dopamine in retinal processing.Brain-to-retina projections modulate the retinal code to match behavioural requirements
Homepage
