Pages

ינואר 12, 2015

  • Date:08שנייולי 2024

    Foundations of Computer Science Seminar

    More information
    שעה
    11:15 - 12:15
    כותרת
    Quantum Algorithms in a Superposition of Spacetimes
    מיקום
    בניין יעקב זיסקינד
    מרצהOmri Shmueli
    Tel-Aviv University
    מארגן
    המחלקה למדעי המחשב ומתמטיקה שימושית
    צרו קשר
    תקצירShow full text abstract about Quantum computers are expected to revolutionize our ability ...»
    Quantum computers are expected to revolutionize our ability to process information. The advancement from classical to quantum computing is a product of our advancement from classical to quantum physics -- the more our understanding of the universe grows, so does our ability to use it for computation. A natural question that arises is, what will physics allow in the future? Can more advanced theories of physics increase our computational power, beyond quantum computing?
    An active field of research in physics studies theoretical phenomena outside the scope of explainable quantum mechanics, that form when attempting to combine Quantum Mechanics (QM) with General Relativity (GR) into a unified theory of Quantum Gravity (QG). QG is known to present the possibility of a quantum superposition of causal structure and event orderings. In the literature of quantum information theory, this translates to a superposition of unitary evolution orders.
    In this talk we will show a first example of a computational model based on models of QG, that provides an exponential speedup over standard quantum computation (under standard hardness assumptions). We define a model and complexity measure for a quantum computer that has the ability to generate a superposition of unitary evolution orders, and show that such computer is able to solve in polynomial time two well-studied problems in computer science: The Graph Isomorphism Problem and the Gap Closest Vector Problem, with gap O( n^{1.5} ). 

     

    The talk is based on https://arxiv.org/abs/2403.02937 .
    הרצאה
  • Date:08שנייולי 2024

    Midrasha on Groups Seminar

    More information
    שעה
    14:15 - 16:00
    כותרת
    Stability, testability, approximation, coboundry expansion and (non)sofic groups
    מיקום
    בניין יעקב זיסקינד
    מרצהAlex Lubotzky
    Weizmann
    מארגן
    המחלקה למתמטיקה
    צרו קשר
    תקצירShow full text abstract about In this last talk of the seminar, we will pack together all ...»
    In this last talk of the seminar, we will pack together all the topics discussed over the semester. In particular, we will suggest a path toward finding a non sofic group. 
    הרצאה
  • Date:09שלישייולי 2024

    Geometric Functional Analysis and Probability Seminar

    More information
    שעה
    10:30 - 12:30
    כותרת
    Cohomology of Fuchsian groups and Fourier interpolation
    מיקום
    בניין יעקב זיסקינד
    מרצהProf. Erez Lapid
    Weizmann Institute
    מארגן
    המחלקה למדעי המחשב ומתמטיקה שימושית
    צרו קשר
    תקצירShow full text abstract about In this informal talk we will discuss a recent paper by Math...»
    In this informal talk we will discuss a recent paper by Mathilde Gerbelli-Gauthier and Akshay Venkatesh that gives a new proof of a Fourier interpolation result first proved by Radchenko-Viazovska, deriving it from a vanishing result of the first cohomology of a Fuchsian group with coefficients in the Weil representation.

     
    הרצאה
  • Date:09שלישייולי 2024

    This decision, not just the average decision: Factors contributing to one single perceptual judgment

    More information
    שעה
    12:30 - 13:30
    מיקום
    אולם הרצאות ע"ש גרהרד שמידט
    מרצהProf. Mathew E. Diamond
    Cognitive Neuroscience, SISSA Trieste, Italy
    מארגן
    המחלקה למדעי המוח
    צרו קשר
    תקצירShow full text abstract about While cognitive neuroscientists have uncovered principles of...»
    While cognitive neuroscientists have uncovered principles of perceptual decision-making by analyzing choices and neuronal firing across thousands of trials, we do not yet know the behavioral or neuronal dynamics underlying one SINGLE choice. For instance, why might a subject judge a given stimulus in category A 70% of the time but in category B 30%? Until we can work out precisely what determines single-decisions – this choice, right now – the mechanisms of real-world decision-making will remain unknown. In tactile psychophysical tasks with rats and humans, we are trying to sort out factors that explain the variability in judgments (across trials) to the identical stimulus input. We identify four factors: (i) trial-to-trial fluctuations in sensory coding, (ii) temporal context, namely, the history of preceding stimuli and choices, (iii) attention, and (iv) bias (predictions originating in beliefs about the environment’s probabilistic structure). The strategy is to bring these factors under experimental control, rather than leaving them to vary according to uninterrogated states within the subject. Psychophysics from rats and humans show that large chunks of variability are accounted for by these factors; evidence from cortical neuronal populations in rats provides some mechanistic grounding.
    הרצאה
  • Date:10רביעייולי 2024

    ABC CHATS: Noam Solomon-Immunai

    More information
    שעה
    14:00 - 15:30
    כותרת
    My way from Mathematical research to decoding the immune system with AI
    מיקום
    בניין על-שם גרשון ואסתר סאגאן
    מרצהNoam Solomon
    CEO and co-founder of Immunai
    צרו קשר
    הרצאה
  • Date:11חמישייולי 2024

    Designing Language Models to Think Like Humans

    More information
    שעה
    11:00 - 12:00
    מיקום
    אולם הרצאות ע"ש גרהרד שמידט
    מרצהDr. Chen Shani
    Post-doctoral researcher NLP group Stanford University
    מארגן
    המחלקה למדעי המוח
    צרו קשר
    תקצירShow full text abstract about While language models (LMs) show impressive text manipulatio...»
    While language models (LMs) show impressive text manipulation capabilities, they also lack commonsense and reasoning abilities and are known to be brittle. In this talk, I will suggest a different LMs design paradigm, inspired by how humans understand it. I will present two papers, both shedding light on human-inspired NLP architectures aimed at delving deeper into the meaning beyond words.
     The first paper [1] accounts for the lack of commonsense and reasoning abilities by proposing a paradigm shift in language understanding, drawing inspiration from embodied cognitive linguistics (ECL). In this position paper we propose a new architecture that treats language as inherently executable, grounded in embodied interaction, and driven by metaphoric reasoning.
     The second paper [2] shows that LMs are brittle and far from human performance in their concept-understanding and abstraction capabilities. We argue this is due to their token-based objectives, and implement a concept-aware post-processing manipulation, showing it matches human intuition better. We then pave the way for more concept-aware training paradigms.  

    [1] Language (Re)modelling: Towards Embodied Language Understanding
    Ronen Tamari, Chen Shani, Tom Hope, Miriam R L Petruck, Omri Abend, and Dafna Shahaf. 2020.
    In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL), pages 6268–6281, Online. Association for Computational Linguistics. 

    [2] Towards Concept-Aware Large Language Models
    Shani, Chen, Jilles Vreeken, and Dafna Shahaf.
    In Findings of the Association for Computational Linguistics: EMNLP 2023, pp. 13158-13170. 2023.
     
    Bio: Chen Shani is a post-doctoral researcher at Stanford's NLP group, collaborating with Prof. Dan Jurafsky. Previously, she pursued her Ph.D. at the Hebrew University under the guidance of Prof. Dafna Shahaf and worked at Amazon Research. Her focus lies at the intersection of humans and NLP, where she implements insights from human cognition to improve NLP systems.
    הרצאה
  • Date:11חמישייולי 2024

    Vision and AI

    More information
    שעה
    12:15 - 13:15
    כותרת
    Deep Learning on a Budget
    מיקום
    בניין יעקב זיסקינד
    מרצהDaphna Weinshall
    HUJI
    מארגן
    המחלקה למדעי המחשב ומתמטיקה שימושית
    צרו קשר
    תקצירShow full text abstract about Currently, the most effective deep learning methods heavily ...»
    Currently, the most effective deep learning methods heavily rely on the availability of a large corpus of annotated data. However, such resources are not always accessible. In this seminar, I will discuss alternative paradigms that aim to make better use of both labelled and unlabelled data, drawing inspiration from certain properties of human learning. I will begin by describing our recent work on active learning, continual learning, and learning with label noise. If time permits, I will also discuss some new insights about local overfitting, which can occur even when overfitting (as traditionally defined)is not observed.

     
    הרצאה
  • Date:11חמישייולי 2024

    זרקור על מדע

    More information
    שעה
    13:00 - 14:00
    כותרת
    TBA
    מיקום
    אולם הרצאות ע"ש גרהרד שמידט
    מרצהYael Eshed Eisenbach
    Dr.
    מארגן
    יחידת שוהם במכון דוידסון
    צרו קשר
    הרצאה
  • Date:11חמישייולי 2024

    Ubiquitin, cell identity and cancer

    More information
    שעה
    14:00 - 15:00
    מיקום
    בניין ע"ש מקס ולילאן קנדיוטי
    מרצהProf. Amir Orian MD/PhD
    Head of the Ruth and Stan Flinkman Genetic Networks Laboratory at the Bruce and Ruth Rappaport Cancer Center (RTICC) and the Technion Faculty of Medicine
    מארגן
    המכון לחקר הטיפול בסרטן עש דואק
    צרו קשר
    הרצאה
  • Date:11חמישייולי 2024

    Seminar for MSc thesis defense

    More information
    שעה
    15:00 - 15:00
    כותרת
    Uncovering a new targeting pathway for endoplasmic reticulum resident protein using whole-genome screens
    מיקום
    Koshland room
    מרצהShani Ravid
    מארגן
    המחלקה לגנטיקה מולקולרית
    צרו קשר
    הרצאה
  • Date:11חמישייולי 2024

    To be announced

    More information
    שעה
    15:00 - 16:00
    מיקום
    בניין לביוכימיה על שם נלה וליאון בנוזיו
    מרצהProf. Leeya Engel
    Faculty of Mechanical Engineering - Technion
    מארגן
    המחלקה למדעים ביומולקולריים
    צרו קשר
    הרצאה
  • Date:15שנייולי 2024

    ישיבת מועצה מדעית

    More information
    שעה
    14:00 - 14:00
    מיקום
    מרכז כנסים על-שם דויד לופאטי
    צרו קשר
    אירועים אקדמיים
  • Date:18חמישייולי 2024

    Cancer Genome Structure and Dynamics

    More information
    שעה
    08:30 - 17:30
    מיקום
    אולם ע"ש דולפי ולולה אבנר
    יושב ראש
    Yosef Yarden
    כנסים
  • Date:18חמישייולי 2024

    Vision and AI

    More information
    שעה
    12:15 - 13:15
    כותרת
    Visual Prompting: Guiding Models to Perform Tasks With Pixels
    מיקום
    בניין יעקב זיסקינד
    מרצהAmir Bar
    Tel Aviv University
    מארגן
    המחלקה למדעי המחשב ומתמטיקה שימושית
    צרו קשר
    תקצירShow full text abstract about How does one adapt a pre-trained visual model to novel downs...»
    How does one adapt a pre-trained visual model to novel downstream tasks without task-specific fine-tuning or changing the model weights? Inspired by prompting in NLP, Visual Prompting is an exciting new paradigm that guides computer vision models to perform downstream tasks by providing visual examples. This talk will focus on designing the underlying self-supervised learning objectives, architectures, and various methods to prompt vision models. Finally, I will discuss in-context learning from a mechanistic interpretability standpoint and share new insights into how transformer models can encode task-specific information in their activation space.

    Bio: Amir Bar is a PhD student at Tel Aviv University and Berkeley AI Research. During his PhD, Amir has focused on self-supervised learning in computer vision and pioneered Visual Prompting (or visual in-context learning). Before starting his PhD, he led the research team at the healthcare startup Zebra Medical Vision (recently acquired), where his team developed multiple FDA-approved algorithms now in clinical use in hospitals worldwide. Starting in August 2024, Amir will join FAIR Labs as a postdoctoral researcher, working with Yann LeCun.
    הרצאה
  • Date:21ראשוןיולי 2024

    Special Guest Seminar

    More information
    שעה
    11:00 - 12:00
    מיקום
    בניין ע"ש מקס ולילאן קנדיוטי
    מרצהDr. Shira Landau
    Advancing Cardiac Health: Novel Vascularized Cardiac Organ-on-a-Chip Systems for Studying Function, Molecular Disease Mechanisms, and Treatment Strategies
    מארגן
    המחלקה לאימונולוגיה ורגנרציה ביולוגית
    צרו קשר
    הרצאה
  • Date:21ראשוןיולי 2024

    PhD thesis defense seminar- Yemima Duchin-Rapp

    More information
    שעה
    14:00 - 15:00
    מיקום
    בניין לביוכימיה על שם נלה וליאון בנוזיו למדעי הצמח
    מארגן
    המחלקה למדעי הצמח והסביבה
    צרו קשר
    הרצאה
  • Date:22שנייולי 2024

    Foundations of Computer Science Seminar

    More information
    שעה
    11:15 - 12:15
    כותרת
    Contract Design: Approximation and Learning
    מיקום
    בניין יעקב זיסקינד
    מרצהInbal Talgam
    Tel Aviv University
    מארגן
    המחלקה למדעי המחשב ומתמטיקה שימושית
    צרו קשר
    תקצירShow full text abstract about The computational research of contract design is an exciting...»
    The computational research of contract design is an exciting new frontier of algorithmic game theory. I demonstrate the potential of the computational approach to shed new light on contract design through two lines of research, on approximation and on learning. 

     

    For contracts and approximation, we'll give an overview of currently-known guarantees of linear contracts - which are far from optimal in the worst-case, max-min optimal under uncertainty, and approximately-optimal in the Bayesian setting. 

     

    For contracts and learning, we'll discuss how performance-based contractual payments can help mitigate moral hazard when delegating ML-related tasks. Along the way we'll see a connection between contract design and statistical hypothesis testing. 

     

    Based on joint works with Tal Alon, Paul Duetting, Ohad Einav, Yingkai Li, Nir Rosenfeld, Tim Roughgarden and Eden Saig.
    הרצאה
  • Date:25חמישייולי 2024

    MSc thesis defense- Ari Isbi

    More information
    שעה
    11:00 - 12:00
    מיקום
    בניין לביוכימיה על שם נלה וליאון בנוזיו למדעי הצמח
    מרצהAri Isbi
    מארגן
    המחלקה למדעי הצמח והסביבה
    צרו קשר
    הרצאה
  • Date:25חמישייולי 2024

    Vision and AI

    More information
    שעה
    12:15 - 13:15
    כותרת
    Multimodal Foundation Models
    מרצהAmir Zamir
    The Swiss Federal Institute of Technology (EPFL)
    מארגן
    המחלקה למדעי המחשב ומתמטיקה שימושית
    צרו קשר
    תקצירShow full text abstract about I will discuss the role of multimodality in learning – speci...»
    I will discuss the role of multimodality in learning – specifically, how to learn a single “foundation” model that can predict an arbitrary set of modalities given another arbitrary set of modalities, and how multimodality could be leveraged to learn a better single-modal representation. I will overview our past works on this topic, e.g., 4M (https://4m.epfl.ch/) and MultiMAE (https://multimae.epfl.ch/), follow-up works, and future explorations. If time permits, I will discuss the implications that I see by embodiment for multimodal learning and generally computer vision
    הרצאה
  • Date:25חמישייולי 2024

    Geometric Functional Analysis and Probability Seminar

    More information
    שעה
    13:30 - 14:30
    כותרת
    Site percolation on planar graphs and circle packings
    מיקום
    בניין יעקב זיסקינד
    מרצהRon Peled
    TAU
    מארגן
    המחלקה למתמטיקה
    צרו קשר
    תקצירShow full text abstract about Color each vertex of an infinite graph blue with probability...»
    Color each vertex of an infinite graph blue with probability p and red with probability 1-p, independently among vertices. For which values of p is there an infinite connected component of blue vertices? The talk will focus on this classical percolation problem for the class of planar graphs. Recently, Itai Benjamini made several conjectures in this context, relating the percolation problem to the behavior of simple random walk on the graph. We will explain how partial answers to Benjamini's conjectures may be obtained using the theory of circle packings. Among the results is the fact that the critical percolation probability admits a universal lower bound for the class of recurrent plane triangulations. No previous knowledge on percolation or circle packings will be assumed.
    הרצאה

Pages