• דלג לאיזור תוכן עיקרי
  • דלג לתפריט
  • דלג לאיזור החיפוש באתר
נגישות
  • הגדלת גודל גופן
  • הקטנת גודל גופן
  • צבעים חדים
  • צבעוניות חד-גוונית
  • צבעוניות ניגודית
  • ברירת מחדל
הצהרהclose
enGo to english websiteעבעבור לאתר בעבריתשפה נוכחית
open search area

טופס חיפוש

המחלקה להוראת המדעים
מכון ויצמן למדע
המחלקה להוראת המדעים
  • בית
  • אודות
  • סגל
    • מדענים
    • מתמחים
    • בתר-דוקטורנטים
    • דוקטורנטים
    • מסטרנטים
    • יועצים ועובדי הוראה
    • צוות מינהלי
  • מחקר ופיתוח
    • רקע כללי
    • גישות חישוביות בניתוח למידה
      • אודות
      • סגל
      • פרסומים
      • פרויקטים
      • תקצירי עבודות מחקר
      • צרו קשר
    • חינוך מדעי אינטר-דיסציפלינרי
      • אודות
      • סגל
      • פרסומים
      • פרויקטים
      • תקצירי עבודות מחקר
      • צרו קשר
    • כימיה
      • אודות
      • סגל
      • פרסומים
      • פרויקטים
      • תקצירי עבודות מחקר
      • חומרי למידה והוראה
      • משאבים נוספים
      • צרו קשר
    • מדעי החיים
      • אודות
      • סגל
      • פרסומים
      • פרויקטים
      • תקצירי עבודות מחקר
      • חומרי למידה והוראה
      • משאבים נוספים
      • צרו קשר
    • מדעי הלמידה
      • אודות
      • סגל
      • פרסומים
      • פרויקטים
      • צרו קשר
    • מדעי המחשב
      • אודות
      • סגל
      • פרסומים
      • פרויקטים
      • תקצירי עבודות מחקר
      • חומרי למידה והוראה
      • משאבים נוספים
      • צרו קשר
    • מדע וטכנולוגיה בחט"ב
      • אודות
      • סגל
      • פרסומים
      • פרויקטים
      • תקצירי עבודות מחקר
      • חומרי למידה והוראה
      • משאבים נוספים
      • צרו קשר
    • מדעי כדור הארץ
      • אודות
      • סגל
      • פרסומים
      • פרויקטים
      • תקצירי עבודות מחקר
      • חומרי למידה והוראה
      • משאבים נוספים
      • צרו קשר
    • מתמטיקה
      • אודות
      • סגל
      • פרסומים
      • פרויקטים
      • תקצירי עבודות מחקר
      • חומרי למידה והוראה
      • משאבים נוספים
      • צרו קשר
    • פיזיקה
      • אודות
      • סגל
      • פרסומים
      • פרויקטים
      • תקצירי עבודות מחקר
      • חומרי למידה והוראה
      • משאבים נוספים
      • צרו קשר
    • ועדת האתיקה IRB-EDU
      • אודות
      • חברי הועדה
      • מדיניות כללית
  • למועמדים
    • תכנית לתלמידי מחקר
    • תכנית רוטשילד ויצמן
    • תעודת הוראה
  • למורים
    • מרכזי מורים ארציים
    • קהילות מורים
    • חומרי למידה והוראה
  • צרו קשר

הינך נמצא כאן

  1. דף הבית
  2. מחקר ופיתוח
  3. כימיה
  4. פרסומים

פרסומים

  • אודות
  • סגל
  • פרסומים
  • פרויקטים
  • תקצירי עבודות מחקר
  • חומרי למידה והוראה
  • משאבים נוספים
  • צרו קשר

    2024

  1. Tablets and Apps for Promoting Nanoliteracy in Early Childhood Education: Results from an Experimental Study

    Dorouka P., Kalogiannakis M. & Blonder R. (2024), Journal of Science Education and Technology. 33, 6, p. 910-927

  2. Are They Ready to Teach? Generative AI as a Means to Uncover Pre-Service Science Teachers PCK and Enhance Their Preparation Program

    Blonder R., Feldman-Maggor Y. & Rap S. (2024), Journal of Science Education and Technology

  3. Correction to: Technology Acceptance When Teaching Climate Change (Journal of Science Education and Technology, (2025), 34, 3, (521-530), 10.1007/s10956-024-10125-9)

    Rap S. & Blonder R. (2024), Journal of Science Education and Technology. 34, 3, p. 531

  4. Fostering inclusive learning: customized kits in chemistry education and their influence on self-efficacy, attitudes and achievements

    Easa E. & Blonder R. (2024), Chemistry Education Research and Practice. 25, 4, p. 1175-1196

  5. How Participation in a Teachers' Eco-Pedagogy Workshop Affects the Promotion of Teachers Environmental Education and Organizational Concepts

    Asli S., Abu-Alhiga R., Teti T., Algmal S., Hofstein A., Shehadeh-Nasser A. & Hugerat M. (2024), European Journal of Educational Research. 13, 1, p. 341-352

  6. Science Teacher Action Research in Top Tier Science Education Journals: A Review of the Literature

    Feldman A., Belova N., Eilks I., Kapanadze M., Rauch F., Mamlok-Naaman R. & Taşar M. F. (2024), Journal of Science Teacher Education

  7. Diversity and inclusion in science education: Why? A Literature Review

    Mamlok-Naaman R. (2024), Center for Educational Policy Studies Journal. 14, 1, p. 13-31

  8. Modes of technology integration in chemistry teaching: theory and practice

    Aroch I., Katchevich D. & Blonder R. (2024), Chemistry Education Research and Practice. 25, 3, p. 843-861

  9. \u201cPowered by emotions\u201d: Exploring emotion induction in out-of-school authentic science learning

    Yonai E. & Blonder R. (2024), Journal of Research in Science Teaching. 62, 2, p. 553-575

  10. The SEMinal impact of contemporary science: integrated authentic science design and students self-efficacy and career aspirations

    Yonai E., Weiner S., Shimoni E. & Blonder R. (2024), International Journal of Science Education

  11. A Rising Tide Lifts All Boats? The Model of Differentiation As a Tool for Diversity in Science toward Social Inclusion

    Kieferle S., Devetak I., Essex J., Hayes S., Stojanovska M., Mamlok-Naaman R. & Markic S. (2024), Journal of Chemical Education. 101, 3, p. 789-797

  12. Technology Acceptance When Teaching Climate Change

    Rap S. & Blonder R. (2024), Journal of Science Education and Technology. 34, 3, p. 521-530

  13. Innovate for Impact: Young Adults Education and Empowerment for Climate Action: Young Adults Education and Empowerment for Climate Action

    Rap S. & Bodas M. (2024), Australian Journal of Environmental Education

  14. Navigating the online learning journey by self-regulation: Teachers as learners

    Feldman-Maggor Y., Tuvi-Arad I. & Blonder R. (2024), Computers and Education. 219, 105074

  15. AI for chemistry teaching: Responsible AI and ethical considerations

    Blonder R. & Feldman-Maggor Y. (2024), Chemistry Teacher International. 6, 4, p. 385-395

  16. Public Knowledge, Attitudes, and Behaviors Toward Educational Renewable Energy Sources in Arab Society in Israel

    Asli S., Diab M., Marai H., Hofstein A. & Hugerat M. (2024), Science and Education

  17. 2023

  18. Frontiers of research in chemistry education for the benefit of chemistry teachers

    Blonder R., Rap S. & Mamlok-Naaman R. (2023), Chemistry Teacher International. 5, 2, p. 107-111

  19. The rise and fall of the phlogiston theory: a tool to explain the use of models in science education

    Mamlok-Naaman R. (2023), Chemistry Teacher International. 5, 3, p. 325-330

  20. What about Aids? The Case of the National Aids Exhibit Consortium and its Traveling Exhibition

    Rosenfeld S., Weiss M., Cooks R., Bell L. & Pollock W. (2023), Amplifying Informal Science Learning. p. 18-28

  21. Amplifying Informal Science Learning: Rethinking Research, Design, and Engagement

    Diamond J. & Rosenfeld S. (2023)

  22. A Computational Chemistry Course for Teachers: From Research Laboratories to High-School Chemistry Teaching

    Traube T. & Blonder R. (2023), Journal of Chemical Education. 100, 11, p. 4360-4368

  23. Learning styles of a story about sustainability: Their effect on the level of questioning of students in primary education

    Asli S., Safi Z., Shehadeh-Nasser A., Hofstein A. & Hugerat M. (2023), Journal of Baltic Science Education. 22, 6, p. 1011-1024

  24. THE RELEVANCE OF LEARNING OUTCOMES INCLUDED IN ESTONIAN GRADE 7-9 SCIENCE SUBJECT CURRICULA ASSOCIATED WITH THE CONCEPT OF ENERGY

    Kõlamets L., Kasuk H., Holbrook J. & Mamlok-Naaman R. (2023), Journal of Baltic Science Education. 22, 4, p. 653-667

  25. Chemical Escape Rooms: Bridging the Gap between Formal and Informal Science Learning

    Yayon M., Rap S. & Blonder R. (2023), Amplifying Informal Science Learning. Diamond J. & Rosenfeld S. (eds.). 1st edition ed. New York p. 182-192

  26. The Influence of Learning with an Online, Personalized Environment on Students Attitudes, Beliefs, and Outcomes

    Aviran E. & Blonder R. (2023), Journal of Science Education and Technology. 32, 5, p. 722-742

  27. Identifying self-regulated learning in chemistry classes - A good practice report

    Feldman-Maggor Y. (2023), Chemistry Teacher International. 5, 2, p. 203-211

  28. The development of an instrument for measuring teachers' and students' beliefs about differentiated instruction and teaching in heterogeneous chemistry classrooms

    Easa E. & Blonder R. (2023), Chemistry Teacher International

  29. "chemistry, climate and the skills in between": Mapping cognitive skills in an innovative program designed to empower future citizens to address global challenges

    Rap S., Geller S., Katchevich D., Gbarin H. & Blonder R. (2023), Chemistry Teacher International. 5, 2, p. 143-154

  30. 2022

  31. Uncovering the Emotional Aspect of Inquiry Practices in a Remote SEM Environment and the Development of a Designated Questionnaire

    Yonai E. & Blonder R. (2022), Journal of Chemical Education. 99, 12, p. 3932-3945

  32. Action Research: A Promising Strategy for Science Teacher Education

    Feldman A., Belova N., Eilks I., Kapanadze M., Mamlok-Naaman R., Rauch F. & Taşar M. F. (2022), Handbook of Research on Science Teacher Education. 1st ed. p. 352-362

  33. Let them choose: Optional assignments and online learning patterns as predictors of success in online general chemistry courses

    Feldman-Maggor Y., Blonder R. & Tuvi-Arad I. (2022), The Internet and higher education. 55, 100867

  34. What can be learned from lecturers knowledge and self-efficacy for online teaching during the Covid-19 pandemic to promote online teaching in higher education

    Blonder R., Feldman-Maggor Y. & Rap S. (2022), PLoS ONE. 17, 10 October, e0275459

  35. "The Masked Scientist": Designing a Virtual Chemical Escape Room

    Haimovich I., Yayon M., Adler V., Levy H., Blonder R. & Rap S. (2022), Journal of Chemical Education. 99, 10, p. 3502-3509

  36. Development and validation of customized pedagogical kits for high-school chemistry teaching and learning: the redox reaction example

    Easa E. & Blonder R. (2022), Chemistry Teacher International : best practices in chemistry education. 4, 1, p. 71-95

  37. Development and evaluation of an online course on nanotechnology for the professional development of chemistry teachers

    Feldman-Maggor Y., Tuvi-Arad I. & Blonder R. (2022), International Journal of Science Education. 44, 16, p. 2465-2484

  38. Authentic Science Learning During COVID-19: The Adaptive Design of a SEM Outreach Activity

    Yonai E., Shimoni E., Kahil Guterman K. & Blonder R. (2022), The biophysicist.. 3, 1

  39. Molecular animations in genomics education: designing for whom?

    Patterson K., Terrill B., Dorfman B., Blonder R. & Yarden A. (2022), Trends in Genetics. 38, 6, p. 517-520

  40. Curriculum development for student agency on sustainability issues: An exploratory study

    Rap S., Blonder R., Sindiani-Bsoul A. & Rosenfeld S. (2022), Frontiers in education (Lausanne). 7, 871102

  41. 2021

  42. The European Chemical Societys Division of Chemical Education

    Mamlok-Naaman R. (2021), STEM education, 138, p. 13-15

  43. What do teachers learn about the discipline of mathematics in academic mathematics courses?

    Hoffmann A. & Even R. (2021), Proceedings of the 44th Conference of the International Group for the Psychology of Mathematics Education, 2021. Inprasitha M., Changsri N. & Boonsena N. (eds.). p. 40-47

  44. Behind the scenes of educational data mining

    Feldman-Maggor Y., Barhoom S., Blonder R. & Tuvi-Arad I. (2021), Education and Information Technologies. 26, 2, p. 1455-1470

  45. Women in science

    Mamlok-Naaman R. (2021), The Israel Chemist and Chemical Engineer. 8, p. 25-29

  46. Crafting Molecular Geometries: Implications of Neuro-Pedagogy for Teaching Chemical Content: Implications of Neuro-Pedagogy for Teaching Chemical Content

    Marchak D., Shvarts-serebro I. & Blonder R. (2021), Journal of Chemical Education. 98, 4, p. 1321-1327

  47. The Role of a WhatsApp Group of a Professional Learning Community of Chemistry Teachers in the Development of Their Knowledge

    Blonder R. & Waldman R. (2021), Research Anthology on Facilitating New Educational Practices Through Communities of Learning. p. 820-843

  48. Long-term research and development in science education: what have we learned?

    Hofstein A., Arcavi A., Eylon B. & Yarden A. (2021)

  49. Introducing Contemporary Research Topics into School Science Programs: The Example of Nanotechnology

    Blonder R. (2021), Long-term Research and Development in Science Education: What Have We Learned?. Vol. 21. p. 29-43

  50. Teaching and Learning in the School Chemistry Laboratory

    Hofstein A. & Hugerat M. (2021)

  51. International collaborative follow-up investigation of graduating high school students' understandings of the nature of scientific inquiry: is progress Being made?

    Lederman J. S., Lederman N. G., Bartels S., Jimenez J., Acosta K., Akubo M., Aly S., Andrade M. A. B. S. d., Atanasova M., Blanquet E., Blonder R., Brown P., Cardoso R., Castillo-Urueta P., Chaipidech P., Concannon J., Dogan O. K., El-Deghaidy H., Elzorkani A., Ferdous T., Fukuda N., Gaigher E., Galvis-Solano L., Gao Q., Guo S., Gwekwerere Y., Gyllenpalm J., Hamed Al-Lal S., Han-Tosunoglu C., Hattingh A., Holliday G., Huang X., Irez S., Kay G., Koumara A., Kremer K., Kuo P., Lavonen J., Leung J. S. C., Liao Z., Librea-Carden M. R., Lin S., Liu C., Liu E., Liu S., Mamlok-Naaman R., Mcdonald C. V., Möller A., Morales M., Mulvey B. K., Neumann I., Neurohr A., Pan Y., Panjaburee P., Penn M., Plakitsi K., Picholle E., Ramnarain U., Raykova Z., Rundgren C., Salonen S., Santibáñez-Gómez D., Schwartz R., Sharma R., Srisawasdi N., Takiveikata S., Urueta-Ortiz T., Vitlarov K., Voitle F. & Wishart J. (2021), International Journal of Science Education. 43, 7, p. 991-1016

  52. Teaching Chemistry by a Creative Approach: Adapting a Teachers Course for Active Remote Learning

    Marchak Ben Hamo D. I., Shvarts-Serebro I. & Blonder R. (2021), Journal of Chemical Education. 98, 9, p. 2809-2819

  53. Undergraduate Students Reasoning about Genetic Mechanisms

    Haskel-Ittah M. & Duncan R. G. (2021), ISLS Annual Meeting 2021 Reflecting the Past and Embracing the Future - 15th International Conference of the Learning Sciences, ICLS 2021. de Vries E., Ahn J. & Hod Y. (eds.). p. 107-114

  54. Womens leadership in chemistry education: An interview with Rachel Mamlok-Naaman

    Blonder R. (2021), International Journal of Physics & Chemistry Education. 13, 2, p. 25-32

  55. Socio-cultural developments of women in science

    Mamlok-Naaman R. (2021), Pure and Applied Chemistry. 93, 8, p. 907-912

  56. 2020

  57. Implementation of a Personalized Online Learning System Towards Creating Hybrid Learning and Teaching in Chemistry Classes

    Aviran E., Easa E., Livne S. & Blonder R. (2020), Early Warning Systems and Targeted Interventions for Student Success in Online Courses. Cohen A., Chang C. & Glick D. (eds.). p. 90-111

  58. Posing Researchable Questions in Mathematics and Science Education: Purposefully Questioning the Questions for Investigation

    Cai J. & Mamlok-Naaman R. (2020), International Journal of Science and Mathematics Education. 18, SUPPL 1, p. 1-7

  59. Scientists suggest insertion of nanoscience and technology into middle school physics

    Yonai E. & Blonder R. (2020), Physical Review Physics Education Research. 16, 1, 010110

  60. Exposing School Students to Nanoscience

    Blonder R. & Yonai E. (2020), 21st Century Nanoscience A Handbook: Public Policy, Education, and Global Trends (Volume Ten).
    Submitted Version

  61. USE YOUR OWN WORDS! Developing science communication skills of NST experts in a guided discourse

    Yonai E. & Blonder R. (2020), International Journal of Science Education, Part B: Communication and Public Engagement. 10, 1, p. 51-76

  62. Exposing School Students to Nanoscience: A Review of Published Programs

    Blonder R. & Yonai E. (2020), 21st century nanoscience: a handbook. (Nanophysics sourcebook).

  63. Challenges in Nanoscience Education

    Jones M. G., Blonder R. & Kähkönen A. L. (2020), 21st Century Nanoscience A Handbook: Public Policy, Education, and Global Trends (Volume Ten).

  64. Do-It-Yourself: Creating and Implementing a Periodic Table of the Elements Chemical Escape Room

    Yayon M., Rap S., Adler V., Haimovich I., Levy H. & Blonder R. (2020), Journal of Chemical Education. 97, 1, p. 132-136

  65. An Applied Research-Based Approach to Support Chemistry Teachers during the COVID-19 Pandemic

    Rap S., Feldman-Maggor Y., Aviran E., Shvarts-Serebro I., Easa E., Yonai E., Waldman R. & Blonder R. (2020), Journal of Chemical Education. 97, 9, p. 3278-3284

  66. Education for Sustainable Development in High School through Inquiry-Type Socio-Scientific Issues

    Mamlok-Naaman R. & Mandler D. (2020), Chemistry Education for a Sustainable Society Volume 1. Middlecamp C. H., Peterman K. E. & Obare S. O. (eds.). p. 69-78

  67. A Holistic Approach to Incorporating Sustainability into Chemistry Education in Israel

    Shwartz Y., Eidin E., Marchak D., Kesner M., Green N. A., Marom E., Cahen D., Hofstein A. & Dori Y. J. (2020), Chemistry Education for a Sustainable Society Volume 1:High School, Outreach, & Global Perspectives. Vol. 1344. p. 125-160

  68. Research Visits as Nuclei for Educational Programs

    Blonder R., Rap S. & Benny N. (2020), Engaging Learners with Chemistry. Apotheker J. & Simon S. (eds.). p. 135-153

  69. A Sense of Community in a Professional Learning Community of Chemistry Teachers: A Study of an Online Platform for Group Communication

    Waldman R. & Blonder R. (2020), STEM Teachers and Teaching in the Digital Era. Martinovic D., Milner-Bolotin M. & Ben-David Kolikant Y. (eds.). Cham p. 111-139

  70. 2019

  71. Identifying systems thinking components in the school science curricular standards of four countries

    Chiu M., Apotheker J. & Mamlok-Naaman R. (2019), Journal of Chemical Education. 96, 12, p. 2814-2824

  72. Effectiveness of Teaching Science by Drama

    Najami N., Hugerat M., Khalil K. & Hofstein A. (2019), Creative education. 10, 1, p. 97-110

  73. Factors Affecting the Study of Chemistry in Different Countries Around the World: Findings from an International Survey

    Blonder R. & Mamlok-Naaman R. (2019), Israel Journal of Chemistry. 59, 6-7, p. 625-634

  74. Special Issue of Israel Journal of Chemistry on Chemistry Education

    Blonder R. & Shenhar R. (2019), Israel Journal of Chemistry. 59, 6-7, p. 448-449

  75. The Role of a WhatsApp Group of a Professional Learning Community of Chemistry Teachers in the Development of Their Knowledge

    Blonder R. & Waldman R. (2019), Mobile Technologies in Educational Organizations. p. 117-140

  76. Technology in the Service of Pedagogy: Teaching with Chemistry Databases

    Tuvi-Arad I. & Blonder R. (2019), Israel Journal of Chemistry. 59, 6-7, p. 572-582

  77. Teachers as Makers in Chemistry Education: an Exploratory Study

    Rosenfeld S., Yayon M., Halevi R. & Blonder R. (2019), International Journal of Science and Mathematics Education. 17, p. S125-S148

  78. A Lab-Based Chemical Escape Room: Educational, Mobile, and Fun!

    Peleg R., Yayon M., Katchevich D., Moria-Shipony M. & Blonder R. (2019), Journal of Chemical Education. 96, 5, p. 955-960

  79. An international collaborative investigation of beginning seventh grade students' understandings of scientific inquiry: Establishing a baseline

    Lederman J., Lederman N., Bartels S., Jimenez J., Akubo M., Aly S., Bao C., Blanquet E., Blonder R., Soares de Andrade M. B., Buntting C., Cakir M., EL-Deghaidy H., ElZorkani A., Gaigher E., Guo S., Hakanen A., Hamed Al-Lal S., Han-Tosunoglu C., Hattingh A., Hume A., Irez S., Kay G., Kivilcan Dogan O., Kremer K., Kuo P., Lavonen J., Lin S., Liu C., Liu E., Liu S., Lv B., Mamlok-Naaman R., McDonald C., Neumann I., Pan Y., Picholle E., Rivero Garcia A., Rundgren C., Santibanez-Gomez D., Saunders K., Schwartz R., Voitle F., von Gyllenpalm J., Wei F., Wishart J., Wu Z., Xiao H., Yalaki Y. & Zhou Q. (2019), Journal of Research in Science Teaching. 56, 4, p. 486-515
    Submitted Version

  80. Research on and Development of Inquiry-Type Chemistry Laboratories in Israel

    Hofstein A., Dkeidek I., Katchevitch D., Nahum T. L., Kipnis M., Navon O., Shore R., Taitelbaum D. & Mamlok-Naaman R. (2019), Israel Journal of Chemistry. 59, 6-7, p. 514-523

  81. The Influences of Global Trends in Teaching and Learning Chemistry on the Chemistry Curriculum in Israel

    Mamlok-Naaman R. & Taitelbaum D. (2019), Israel Journal of Chemistry. 59, 6-7, p. 618-624

  82. Teaching chemistry through contemporary research versus using a historical approach

    Ron B. & Rachel M. (2019), Chemistry Teacher International. 2, 1, 20180011

  83. Teachers personalize videos and animations of biochemical processes: results from a professional development workshop

    Dorfman B., Terrill B., Patterson K., Yarden A. & Blonder R. (2019), Chemistry Education Research and Practice. 20, 4, p. 772-786

  84. Integrating the Human Element in the Responsible Research and Innovation Framework into Systems Thinking Approaches for Teachers' Professional Development

    Blonder R. & Rosenfeld S. (2019), Journal of Chemical Education. 96, 12, p. 2700-2703

  85. 2018

  86. Interactions of chemistry teachers with gifted students in a regular high-school chemistry classroom

    Benny N. & Blonder R. (2018), Chemistry Education Research and Practice. 19, 1, p. 122-134

  87. Professional development of chemistry teachers: theory and practice

    Mamlok-Naaman R., Eilks I., Bodner G. & Hofstein A. (2018)

  88. Student-curated exhibitions: Alternative assessment in chemistry education in Israel

    Blonder R. (2018), International Perspectives on Chemistry Education Research and Practice. Cox C. & Schatzberg W. E. (eds.). Vol. 1293. p. 39-55 (trueACS Symposium Series)

  89. Insertion points of the essential nanoscale science and technology (NST) concepts in the Israeli middle school science and technology curriculum

    Sakhnini S. & Blonder R. (2018), Nanotechnology Reviews. 7, 5, p. 373-391

  90. Using the Action Research rationale to enhance the creation of teachers Professional Learning Communities (PLCs)

    Mamlok-Naaman R. (2018), ARISE. 1, 1, p. 27-32

  91. Contextualizing the EU's "Responsible research and innovation" Policy in science education: A conceptual comparison with the nature of science concept and practical examples

    Laherto A., Kampschulte L., Vocht M. d., Blonder R., Akaygun S. & Apotheker J. (2018), Eurasia Journal of Mathematics, Science and Technology Education. 14, 6, p. 2287-2300

  92. Action research in science education - An analytical review of the literature

    Laudonia I., Mamlok-Naaman R., Abels S. & Eilks I. (2018), Educational Action Research. 28, 4, p. 480-495

  93. 2017

  94. Thou shall not try to speak in the Facebook language: Students' perspectives regarding using Facebook for chemistry learning

    Rap S. & Blonder R. (2017), Computers and Education. 114, p. 69-78

  95. Curriculum Development in Science Education

    Eilks I. & Hofstein A. (2017), Science Education. Akpan B. & Taber K. S. (eds.). Rotterdam p. 169-181

  96. I like Facebook: Exploring Israeli high school chemistry teachers TPACK and self-efficacy beliefs

    Blonder R. & Rap S. (2017), Education and Information Technologies. 22, p. 697-724

  97. Responsible Research and Innovation in secondary school science classrooms: Experiences from the project Irresistible

    Apotheker J., Blonder R., Akaygun S., Reis P., Kampschulte L. & Laherto A. (2017), Pure and Applied Chemistry. 89, 2, p. 211-219

  98. Teachers' views on implementing storytelling as a way to motivate inquiry learning in high-school chemistry teaching

    Peleg R., Yayon M., Katchevich D., Mamlok-Naaman R., Fortus D., Eilks I. & Hofstein A. (2017), Chemistry Education Research and Practice. 18, 2, p. 304-309
    Submitted Version

  99. Introducing Responsible Research and Innovation (RRI) into the secondary school chemistry classroom: the irresistible project

    Blonder R., Rosenfeld S., Rap S., Apotheker J., Akaygun S., Reis P., Kampschulte L. & Laherto A. (2017), Daruna - Scientific, Educational & Literary Journal. 44, p. 36-43

  100. Finding the connections between a high-school chemistry curriculum and nano science and technology

    Blonder R. & Sakhnini S. (2017), Chemistry Education Research and Practice. 18, 4, p. 903-922

  101. Assessing Attitudes about Responsible Research and Innovation (RRI): The Development and Use of a Questionnaire

    Blonder R., Rap S., Zemler E. & Rosenfeld S. (2017), Sisyphus - Journal of Education. 5, 3, p. 122-156

  102. Context-based chemistry learning: The relevance of chemistry for citizenship and responsible research and innovation

    Parchmann I., Blonder R. & Broman K. (2017), Contextualizing Teaching to Improve Learning. p. 25-39

  103. The effectiveness of teachers' use of demonstrations for enhancing students' understanding of and attitudes to learning the oxidation-reduction concept

    Basheer A., Hugerat M., Kortam N. & Hofstein A. (2017), Eurasia Journal Of Mathematics Science And Technology Education. 13, 3, p. 555-570

  104. The Role of Laboratory in Science Teaching and Learning

    Hofstein A. (2017), Science Education. Ben A. & Keith S. T. (eds.). p. 357-368

  105. Learning science through a historical approach

    Mamlok-Naaman R. (2017), Educació Química: EduQ. 23, 1, p. 9-14, 3

  106. Curriculum Implementation in Science Education

    Mamlok-Naaman R. (2017), Science Education. Akpan B. & Taber K. S. (eds.). Rotterdam p. 199-210

  107. 2016

  108. Factors That Promote/Inhibit Teaching Gifted Students In A Regular Class: Results From A Professional Development Program For Chemistry Teachers

    Benny N. & Blonder R. (2016), Education Research International. 2016, 2742905

  109. Excuse me teacher, but you made a mistake...: interactions between science teachers and gifted students in a regular classroom

    Benny N. & Blonder R. (2016), International Perspectives on Science Education for the Gifted. Taber K. S. & Sumida M. (eds.). Abingdon, Oxon OX14 4RN, UK p. 57-71

  110. Factors Influencing Postsecondary STEM Students Views of the Public Communication of an Emergent Technology: a Cross-National Study from Five Universities

    Gardner G. E., Jones M. G., Albe V., Blonder R., Laherto A., Macher D. & Paechter M. (2016), Research in Science Education. 47, p. 1011-1029
    Submitted Version

  111. Learning about teaching the extracurricular topic of nanotechnology as a vehicle for achieving a sustainable change in science education

    Blonder R. & Mamlok-Naaman R. (2016), International Journal of Science and Mathematics Education. 14, p. 345-372

  112. What Are the Basic Concepts of Nanoscale Science and Technology (NST) that Should Be Included in NST Educational Programs?

    Blonder R. & Sakhnini S. (2016), Global Perspectives of Nanoscience and Engineering Education. Bhushan B. & Winkelmann K. (eds.). Cham p. 117-127

  113. The story of lead: A context for learning about responsible research and innovation (RRI) in the chemistry classroom

    Blonder R., Zemler E. & Rosenfeld S. (2016), Chemistry Education Research and Practice. 17, 4, p. 1145-1155

  114. Online Nanoeducation Resources

    Cohen S., Blonder R., Rap S. & Barokas J. (2016), Global Perspectives of Nanoscience and Engineering Education. p. 171-194

  115. One country, two cultures - A multi-perspective view on Israeli chemistry teachers beliefs about teaching and learning

    Markic S., Eilks I., Mamlok-Naaman R., Hugerat M., Kortam N., Dkeidek I. & Hofstein A. (2016), TEACHERS AND TEACHING. 22, 2, p. 131-147

  116. Lets Face(book) It: Analyzing Interactions in Social Network Groups for Chemistry Learning

    Rap S. & Blonder R. (2016), Journal of Science Education and Technology. 25, 1, p. 62-76

  117. Nanotechnology applications as a context for teaching the essential concepts of NST

    Sakhnini S. & Blonder R. (2016), International Journal of Science Education. 38, 3, p. 521-538

  118. 2015

  119. Learning about Sustainable Development in Socio-Scientific Issues-Based Chemistry Lessons on Fuels and Bioplastics

    Mamlok-Naaman R., Katchevich D., Yayon M., Burmeister M., Feierabend T. & Eilks I. (2015), Worldwide Trends in Green Chemistry Education. p. 45-60

  120. Zespół Osób Uczących się jako propozycja rozwoju kompetencji nauczycieli i podnoszenia jakości pracy szkoły

    Krzeczkowska M., Maciejowska I., Apotheker J. & Blonder R. (2015), Z CHEMIĄ ku przyszłości. Janiuk R. M. (eds.). p. 161-174

  121. Learning from and about Industry for Relevant Chemistry Education

    Hofstein A. & Kesner M. (2015), Relevant Chemistry Education. Hofstein A. & Eilks I. (eds.). Rotterdam p. 285-299

  122. Using Atomic Force Microscopy in Out-of-School Settings: Two Case Studies Investigating the Knowledge and Understanding of High School Students

    Schwarzer S., Akaygun S., Sagun-Gokoz B., Anderson S. & Blonder R. (2015), Journal of Nano Education. 7, 1, p. 10-27

  123. Understanding electrochemistry concepts using the predict-observe-explain strategy

    Karamustafaoğlu S. & Mamlok-Naaman R. (2015), Eurasia Journal Of Mathematics Science And Technology Education. 11, 5, p. 923-936

  124. QUESTIONING BEHAVIOR OF STUDENTS IN THE INQUIRY CHEMISTRY LABORATORY: DIFFERENCES BETWEEN SECTORS AND GENDERS IN THE ISRAELI CONTEXT

    Blonder R., Rap S., Mamlok-Naaman R. & Hofstein A. (2015), International Journal of Science and Mathematics Education. 13, p. 705-732

  125. The Philosophical Works of Ludwik Fleck and Their Potential Meaning for Teaching and Learning Science

    Stuckey M., Heering P., Mamlok-Naaman R., Hofstein A. & Eilks I. (2015), Science & Education. 24, p. 281-298

  126. Essential Concepts of Nanoscale Science and Technology for High School Students Based on a Delphi Study by the Expert Community

    Sakhnini S. & Blonder R. (2015), International Journal of Science Education. 37, 11, p. 1699-1738

  127. "Chemistry of tomorrow" should be part of the school chemistry of today

    Blonder R. (2015), EC2E2N Newsletter. 16, 1

  128. The Development of High-Order Learning Skills in High School Chemistry Laboratory: "Skills for Life"

    Hofstein A. (2015), Chemistry Education. SerranoTorregrosa E. & GarcíaMartínez J. (eds.). p. 517-537

  129. The making of nanotechnology: Exposing high-school students to behind-the-scenes of nanotechnology by inviting them to a nanotechnology conference

    Blonder R. & Sakhnini S. (2015), Nanotechnology Reviews. 4, 1, p. 103-116

  130. Teaching and learning the concept of chemical bonding

    Mamlok-Naaman R., Levy Nahum T. & Hofstein A. (2015), Educació Química: EduQ. 21, 1, p. 13-19

  131. Learning about relevance concerning cultural and gender differences in chemistry education

    Mamlok-Naaman R., Abels S. & Markic S. (2015), Relevant Chemistry Education. Rotterdam p. 219-240

  132. Professional development of chemistry teachers for relevant chemistry education

    Hugerat M., Mamlok-Naaman R., Eilks I. & Hofstein A. (2015), Relevant Chemistry Education. p. 369-386

  133. 2014

  134. Developing and implementing inquiry-based, water quality laboratory experiments for high school students to explore real environmental issues using analytical chemistry

    Mandler D., Blonder R., Yayon M., Mamlok-Naaman R. & Hofstein A. (2014), Journal of Chemical Education. 91, 4, p. 492-496

  135. The effect of tungsten disulfide nanotubes on the properties of silicone adhesives

    Goldberg G., Dodiuk H., Kenig S., Cohen R. & Terme R. (2014), International Journal of Adhesion and Adhesives. 55, p. 77-81

  136. Nanoeducation: Zooming into Teacher Professional Development Programmes in Nanoscience and Technology

    Blonder R., Parchmann I., Akaygun S. & Albe V. (2014), Topics and Trends in Current Science Education. Tiberghien A., Bruguière C. & Clément P. (eds.). Dordrecht p. 159-174 (trueContributions from Science Education Research)

  137. Teaching self-efficacy of science teachers

    Blonder R., Benny N. & Jones M. G. (2014), The Role of Science Teachers' Beliefs in International Classrooms. Pea C., Czerniak C., Luft J. & Evans R. (eds.). p. 3-15

  138. Chemistry Teachers Introduce High-School Students to Advanced Topics Using a Poster Exhibition of Contemporary Organic Chemistry

    Blonder R. & Meshulam I. (2014), Sisyphus - Journal of Education. 2, 2, p. 48-73

  139. 2013

  140. Can You Tube it? Providing chemistry teachers with technological tools and enhancing their self-efficacy beliefs

    Blonder R., Jonatan M., Bar-Dov Z., Benny N., Rap S. & Sakhnini S. (2013), Chemistry Education Research and Practice. 14, 3, p. 269-285

  141. Nanotechnology and Nanoscale Science: Educational challenges

    Jones M. G., Blonder R., Gardner G. E., Albe V., Falvo M. & Chevrier J. (2013), International Journal of Science Education. 35, 9, p. 1490-1512

  142. The meaning of 'relevance' in science education and its implications for the science curriculum

    Stuckey M., Hofstein A., Mamlok-Naaman R. & Eilks I. (2013), Studies in Science Education. 49, 1, p. 1-34

  143. How to Balance Chemistry Education Between Observing Phenomena and Thinking in Models

    De Jong O., Blonder R. & Oversby J. (2013), Teaching Chemistry A Studybook. Hofstein A. & Eilks I. (eds.). Rotterdam p. 97-126

  144. Chemistry Teachers Enhance Their Knowledge in Contemporary Scientific Areas

    Mamlok-Naaman R., Blonder R. & Hofstein A. (2013), Chemistry Education and Sustainability in the Global Age. Chou C-C, Tuan H-L, Wu H-K, Lin J-W & Chiu M-H (eds.). Dordrecht p. 85-96

  145. PINCHAS (PINI) TAMIR A Long-Distance Runner Across and Beyond Science Education

    Hofstein A., Arzi H. J. & Zohar A. (2013), Going Back For Our Future: Carrying Forward The Spirit Of Pioneers Of Science Education. p. 249-267 (truePioneers in Science Education)

  146. Argumentation in the Chemistry Laboratory: Inquiry and Confirmatory Experiments

    Katchevich D., Hofstein A. & Mamlok-Naaman R. (2013), Research in Science Education. 43, 1, p. 317-345

  147. 2012

  148. Assessment of the laboratory learning environment in an inquiry-oriented chemistry laboratory in Arab and Jewish high schools in Israel

    Dkeidek I., Mamlok-Naaman R. & Hofstein A. (2012), Learning Environments Research. 15, 2, p. 141-169

  149. Teaching two basic nanotechnology concepts in secondary school by using a variety of teaching methods

    Blonder R. & Sakhnini S. (2012), Chemistry Education Research and Practice. 13, 4, p. 500-516

  150. Laboratory activities in Israel

    Mamlok-Naaman R. & Barnea N. (2012), Eurasia Journal Of Mathematics Science And Technology Education. 8, 1, p. 49-57

  151. Characterizing and representing student's conceptual knowledge of chemical bonding

    Yayon M., Mamlok-Naaman R. & Fortus D. (2012), Chemistry Education Research and Practice. 13, 3, p. 248-267

  152. DIFFERENT TYPES OF ACTION RESEARCH TO PROMOTE CHEMISTRY TEACHERS' PROFESSIONAL DEVELOPMENT-A JOINED THEORETICAL REFLECTION ON TWO CASES FROM ISRAEL AND GERMANY

    Mamlok-Naaman R. & Eilks I. (2012), International Journal of Science and Mathematics Education. 10, 3, p. 581-610

  153. High-school chemistry teaching through environmentally oriented curricula

    Mandler D., Mamlok-Naaman R., Blonder R., Yayon M. & Hofstein A. (2012), Chemistry Education Research and Practice. 13, 2, p. 80-92

  154. 2011

  155. Peer Argumentation in the School Science Laboratory-Exploring effects of task features

    Kind P. M., Kind V., Hofstein A. & Wilson J. (2011), International Journal of Science Education. 33, 18, p. 2527-2558

  156. Societal issues and their importance for contemporary science education-a pedagogical justification and the state-of-the-art in Israel, Germany, and the USA

    Hofstein A., Eilks I. & Bybee R. (2011), International Journal of Science and Mathematics Education. 9, 6, p. 1459-1483

  157. Effect of culture on high-school students' question-asking ability resulting from an inquiry-oriented chemistry laboratory

    Dkeidek I., Mamlok-Naaman R. & Hofstein A. (2011), International Journal of Science and Mathematics Education. 9, 6, p. 1305-1331

  158. The story of nanomaterials in modern technology: An advanced course for chemistry teachers

    Blonder R. (2011), Journal of Chemical Education. 88, 1, p. 49-52

  159. 2010

  160. Atomic Force Microscopy: Opening the Teaching Laboratory to the Nanoworld

    Blonder R., Joselevich E. & Cohen S. (2010), Journal of Chemical Education. 87, 12, p. 1290-1293

  161. Providing chemistry teachers with opportunities to enhance their knowledge in contemporary scientific areas: A three-stage model

    Mamlok-Naaman R., Blonder R. & Hofstein A. (2010), Chemistry Education Research and Practice. 11, 4, p. 241-252

  162. Continuous symmetry and chemistry teachers: Learning advanced chemistry content through novel visualization tools

    Tuvi-Arad I. & Blonder R. (2010), Chemistry Education Research and Practice. 11, 1, p. 48-58

  163. Development and implementation of inquiry-based and computerized-based laboratories: Reforming high school chemistry in Israel

    Barneaa N., Doria Y. J. & Hofsteind A. (2010), Chemistry Education Research and Practice. 11, 3, p. 218-228

  164. Teaching and learning the concept of chemical bonding

    Nahum T. L., Mamlok-Naaman R., Hofstein A. & Taber K. S. (2010), Studies in Science Education. 46, 2, p. 179-207

  165. 2009

  166. Enhancing students' understanding of the concept of chemical bonding by using activities provided on an interactive website

    Frailich M., Kesner M. & Hofstein A. (2009), Journal of Research in Science Teaching. 46, 3, p. 289-310

  167. 2008

  168. Increasing Science Teachers' Ownership through the Adaptation of the PARSEL Modules: A "Bottom-up" Approach

    Blonder R., Kipnis M., Mamlok-Naaman R. & Hofstein A. (2008), Science Education International. 19, 3, p. 285-301

  169. Analyzing inquiry questions of high-school students in a gas chromatography open-ended laboratory experiment

    Blonder R., Mamlok-Naaman R. & Hofstein A. (2008), Chemistry Education Research and Practice. 9, 3, p. 250-258

  170. The return of the black box

    Yayon M. & Scherz Z. (2008), Journal of Chemical Education. 85, 4, p. 541-543

  171. Evidence for teachers' change while participating in a continuous professional development programme and implementing the inquiry approach in the chemistry laboratory

    Taitelbaum D., Mamlok-Naaman R., Carmeli M. & Hofstein A. (2008), International Journal of Science Education. 30, 5, p. 593-617

  172. Scientific-chemical viewpoints regarding smoking: A science laboratory for all

    Blonder R. (2008), Journal of Chemical Education. 85, 2, p. 248-250

  173. A new "bottom-up" framework for teaching chemical bonding

    Nahum T. L., Mamlok-Naaman R., Hofstein A. & Kronik L. (2008), Journal of Chemical Education. 85, 12, p. 1680-1685

  174. 2007

  175. Involving science teachers in the development and implementation of assessment tools for "Science for All" type curricula

    Penick J. E., Mamlok-Naaman R. & Hofstein A. (2007), Journal of Science Teacher Education. 18, 4, p. 497-524

  176. Developing a new teaching approach for the chemical bonding concept aligned with current scientific and pedagogical knowledge

    Nahum T. L., Mamlok-Naaman R., Hofstein A. & Krajcik J. (2007), Science Education. 91, 4, p. 579-603

  177. INQUIRING THE INQUIRY LABORATORY IN HIGH SCHOOL

    Kipnis M. & Hofstein A. (2007), Contributions From Science Education Research. p. 297-306

  178. The laboratory in science education: The state of the art

    Hofstein A. & Mamlok-Naaman R. (2007), Chemistry Education Research and Practice. 8, 2, p. 105-107

  179. 2006

  180. Chemical literacy: What does this mean to scientists and school teachers?

    Shwartz Y., Ben-Zvi R. & Hofstein A. (2006), Journal of Chemical Education. 83, 10, p. 1557-1561

  181. Improving the classroom laboratory learning environment by using teachers and students perceptions

    Hofstein A. (2006), Contemporary Approaches to Research on Learning Environments. p. 75-91

  182. Industrial chemistry and school chemistry: Making chemistry studies more relevant

    Hofstein A. & Kesner M. (2006), International Journal of Science Education. 28, 9, p. 1017-1039

  183. 2005

  184. Developing students' ability to ask more and better questions resulting from inquiry-type chemistry laboratories

    Hofstein A., Navon O., Kipnis M. & Mamlok-Naaman R. (2005), Journal of Research in Science Teaching. 42, 7, p. 791-806

  185. The importance of involving high-school chemistry teachers in the process of defining the operational meaning of chemical literacy

    Shwartz Y., Ben-Zv R. & Hofstein A. (2005), International Journal of Science Education. 27, 3, p. 323-344

  186. Chemistry teachers research their own work: Two case studies

    Mamlok-Naaman R., Navon O., Carmeli M. & Hofstein A. (2005), Research and the Quality of Science Education. p. 141-155

  187. 2004

  188. Providing high school chemistry students with opportunities to develop learning skills in an inquiry-type laboratory: A case study

    Hofstein A., Shore R. R. & Kipnis M. (2004), International Journal of Science Education. 26, 1, p. 47-62

  189. Can final examinations amplify students misconceptions in chemistry?

    Levy Nahum T., Hofstein A., Mamlok-Naaman R. & Bar-Dov Z. (2004), Chemistry Education Research and Practice. 5, 3, p. 301- 325

  190. The Laboratory in Science Education: Foundations for the Twenty-First Century

    Hofstein A. & Lunetta V. N. (2004), Science Education. 88, 1, p. 28-54

  191. 1999

  192. שיטות הוראה ודרכי הערכה חלופיות במסגרת תכנית מוט"ב

    ממלוק ר., קצביץ ד., לאונוב א. & בן-צבי ר. (1999), הלכה למעשה. 14

  193. 1997

  194. Student and teacher perceptions of industrial chemistry case studies

    Kesner M., Hofstein A. & BenZvi R. (1997), International Journal of Science Education. 19, 6, p. 725-738

  195. The development and implementation of two industrial chemistry case studies for the israeli high school chemistry curriculum

    Kesner M., Hofstein A. & BenZvi R. (1997), International Journal of Science Education. 19, 5, p. 565-576

  196. 1995

  197. הפעלת תכנית לימודים בכימיה בגליל:: מודל להסבת מורים מהוראת מקצוע אחד להוראת מקצוע אחר

    ממלוק ר., הופשטיין א., בן-צבי ר. & כרמלי מ. (1995), הלכה למעשה. 10, p. 149-170

  198. 1994

  199. Factors that influence learning during a scientific field trip in a natural environment

    Orion N. & Hofstein A. (1994), Journal of Research in Science Teaching. 31, 10, p. 1097-1119

  200. 1993

  201. A Model of Thermal Equilibrium: A Tool for the Introduction of Thermodynamics

    BENZVI R., SILBERSTEIN J. & Mamlok-Naaman R. (1993), Journal of Chemical Education. 70, 1, p. 31-34

  202. 1991

  203. The measurement of students' attitudes towards scientific field trips

    Orion N. & Hofstein A. (1991), Science Education. 75, 5, p. 513-523

  204. 1986

  205. Is an atom of copper malleable?

    BENZVI R., Eylon B. S. & SILBERSTEIN J. (1986), Journal of Chemical Education. 63, 1, p. 64-66

  206. Features of a quality curriculum for school science

    YAGER R. & Hofstein A. (1986), Journal of Curriculum Studies. 18, 2, p. 133-146

  207. Forgetting versus savings: The many facets of longterm retention

    Arzi H. J., Ben-Zvi R. & Ganiel U. (1986), Science Education. 70, 2, p. 171-188

  208. A comparison of the actual and preferred classroom learning environment in biology and chemistry as perceived by high school students

    Hofstein A. & Lazarowitz R. (1986), Journal of Research in Science Teaching. 23, 3, p. 189-199

  209. 1985

  210. Defining enlarged boundaries for school science

    YAGER R. & Hofstein A. (1985), European Journal of Science Education. 7, 4, p. 345-352

  211. Students preferences for industrial case studies

    NAE H. & Hofstein A. (1985), Journal of Chemical Education. 62, 3, p. 198

  212. Motivating strategies in science education: Attempt at an analysis

    Hofstein A. & Kempa R. F. (1985), European Journal of Science Education. 7, 3, p. 221-229

  213. 1982

  214. Chemistry in action: How to plan a visit to the chemical industry

    NAE H., MANDLER V., Hofstein A. & Samuel D. (1982), Journal of Chemical Education. 59, 7, p. 582-583

  215. The Role of the Laboratory in Science Teaching: Neglected Aspects of Research

    Hofstein A. & Lunetta V. N. (1982), Review of Educational Research. 52, 2, p. 201-217

  216. 1980

  217. Chemical industry: A new interdisciplinary course for secondary schools

    Nae N., Hofstein A. & Samuel D. (1980), Journal of Chemical Education. 57, 5, p. 366-368

  218. 1978

  219. A Comparative study of cognitive preferences of different groups of chemistry students

    Hofstein A., BENZVI R. & Samuel D. (1978), Journal of Chemical Education. 55, 11, p. 705-707

  220. 1976

  221. The attitude of high school students towards the use of filmed experiments

    BENZVI R., Hofstein A., Samuel D. & KEMPA R. (1976), Journal of Chemical Education. 53, 9, p. 575-577

  222. The effectiveness of filmed experiments in high school chemical education

    BENZVI R., Hofstein A., Samuel D. & KEMPA R. (1976), Journal of Chemical Education. 53, 8, p. 518-520

כל הזכויות שמורות למחלקה להוראת המדעים, מכון ויצמן למדע

  • ועדת האתיקה
  • הצהרת נגישות
  • תנאי שימוש
  • מפת האתר
  • חפשו אותנו בפייסבוק